Back to Search
Start Over
Eigenvalue spectra of random matrices for neural networks.
- Source :
-
Physical review letters [Phys Rev Lett] 2006 Nov 03; Vol. 97 (18), pp. 188104. Date of Electronic Publication: 2006 Nov 02. - Publication Year :
- 2006
-
Abstract
- The dynamics of neural networks is influenced strongly by the spectrum of eigenvalues of the matrix describing their synaptic connectivity. In large networks, elements of the synaptic connectivity matrix can be chosen randomly from appropriate distributions, making results from random matrix theory highly relevant. Unfortunately, classic results on the eigenvalue spectra of random matrices do not apply to synaptic connectivity matrices because of the constraint that individual neurons are either excitatory or inhibitory. Therefore, we compute eigenvalue spectra of large random matrices with excitatory and inhibitory columns drawn from distributions with different means and equal or different variances.
- Subjects :
- Neural Pathways
Models, Theoretical
Neurons
Subjects
Details
- Language :
- English
- ISSN :
- 0031-9007
- Volume :
- 97
- Issue :
- 18
- Database :
- MEDLINE
- Journal :
- Physical review letters
- Publication Type :
- Academic Journal
- Accession number :
- 17155583
- Full Text :
- https://doi.org/10.1103/PhysRevLett.97.188104