Back to Search
Start Over
Algorithmic computation of knot polynomials of secondary structure elements of proteins.
- Source :
-
Journal of computational biology : a journal of computational molecular cell biology [J Comput Biol] 2006 Oct; Vol. 13 (8), pp. 1503-12. - Publication Year :
- 2006
-
Abstract
- The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure--alpha-helix, antiparallel beta-sheet, and parallel beta-sheet--and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.
Details
- Language :
- English
- ISSN :
- 1066-5277
- Volume :
- 13
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of computational biology : a journal of computational molecular cell biology
- Publication Type :
- Academic Journal
- Accession number :
- 17061925
- Full Text :
- https://doi.org/10.1089/cmb.2006.13.1503