Back to Search
Start Over
Antiparkinsonian effects of the novel D3/D2 dopamine receptor agonist, S32504, in MPTP-lesioned marmosets: Mediation by D2, not D3, dopamine receptors.
- Source :
-
Movement disorders : official journal of the Movement Disorder Society [Mov Disord] 2006 Dec; Vol. 21 (12), pp. 2090-5. - Publication Year :
- 2006
-
Abstract
- L-dopa remains the most common treatment for Parkinson's disease. However, there is considerable interest in D3/D2 receptor agonists such as the novel agent S32504, since they exert antiparkinsonian properties in the absence of dyskinesia. An important question concerns the roles of D2 vs. D3 receptors, an issue we addressed with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned nonhuman primate model of Parkinson's disease. In L-dopa-primed animals, S32504 (0.16-2.5 mg/kg p.o.) dose-dependently enhanced locomotor activity. This action was abolished by the D2 antagonist, L741,626 (2.5 mg/kg), but potentiated by the D3 antagonist, S33084 (0.63 mg/kg). Both antagonists were inactive alone. In drug-naive animals, a maximally effective dose of S32504 (2.5 mg/kg p.o.) displayed pronounced antiparkinsonian properties from the third day of administration, and its actions were expressed rapidly and durably. Thus, on day 33, antiparkinsonian properties of S32504 were apparent within 5 minutes and present for > 4 hours. Moreover, they were associated with neither wearing off nor significant dyskinesia. In conclusion, the novel D3/D2 agonist S32504 may offer advantages over L-dopa in the treatment of newly diagnosed parkinsonian patients. Its actions are expressed primarily by activation of D2, not D3, receptors.<br /> (Copyright 2006 Movement Disorder Society.)
- Subjects :
- Analysis of Variance
Animals
Behavior, Animal drug effects
Callithrix
Disease Models, Animal
Dopamine Antagonists therapeutic use
Dose-Response Relationship, Drug
Drug Administration Schedule
Indoles therapeutic use
Levodopa therapeutic use
MPTP Poisoning physiopathology
Motor Activity drug effects
Piperidines therapeutic use
Receptors, Dopamine D3 physiology
Time Factors
Antiparkinson Agents therapeutic use
MPTP Poisoning drug therapy
Oxazines therapeutic use
Receptors, Dopamine D2 physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0885-3185
- Volume :
- 21
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Movement disorders : official journal of the Movement Disorder Society
- Publication Type :
- Academic Journal
- Accession number :
- 16991143
- Full Text :
- https://doi.org/10.1002/mds.21106