Back to Search
Start Over
Parallel genetic origins of pelvic reduction in vertebrates.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2006 Sep 12; Vol. 103 (37), pp. 13753-8. Date of Electronic Publication: 2006 Aug 31. - Publication Year :
- 2006
-
Abstract
- Despite longstanding interest in parallel evolution, little is known about the genes that control similar traits in different lineages of vertebrates. Pelvic reduction in stickleback fish (family Gasterosteidae) provides a striking example of parallel evolution in a genetically tractable system. Previous studies suggest that cis-acting regulatory changes at the Pitx1 locus control pelvic reduction in a population of threespine sticklebacks (Gasterosteus aculeatus). In this study, progeny from intergeneric crosses between pelvic-reduced threespine and ninespine (Pungitius pungitius) sticklebacks also showed severe pelvic reduction, implicating a similar genetic origin for this trait in both genera. Comparative sequencing studies in complete and pelvic-reduced Pungitius revealed no differences in the Pitx1 coding sequences, but Pitx1 expression was absent from the prospective pelvic region of larvae from pelvic-reduced parents. A much more phylogenetically distant example of pelvic reduction, loss of hindlimbs in manatees, shows a similar left-right size bias that is a morphological signature of Pitx1-mediated pelvic reduction in both sticklebacks and mice. These multiple lines of evidence suggest that changes in Pitx1 may represent a key mechanism of morphological evolution in multiple populations, species, and genera of sticklebacks, as well as in distantly related vertebrate lineages.
Details
- Language :
- English
- ISSN :
- 0027-8424
- Volume :
- 103
- Issue :
- 37
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 16945911
- Full Text :
- https://doi.org/10.1073/pnas.0604706103