Back to Search Start Over

Extraction of nanosize copper pollutants with an ionic liquid.

Authors :
Huang HL
Wang HP
Wei GT
Sun IW
Huang JF
Yang YW
Source :
Environmental science & technology [Environ Sci Technol] 2006 Aug 01; Vol. 40 (15), pp. 4761-4.
Publication Year :
2006

Abstract

Speciation and possible reaction paths of nanosize copper pollutants extracted with a RTIL (room-temperature ionic liquid ([C4mim][PF6], 1-butyl-3-methylimidazolium hexafluorophosphate)) have been studied in the present work. Experimentally, in a very short contact time (2 min), 80-95% of nanosize CuO as well as other forms of copper (such as nanosize Cu, Cu2+, or Cu(II)(ads) (in the channels of MCM-41)) in the samples could be extracted into the RTIL. The main copper species extracted in the RTIL as observed by XANES (X-ray absorption near edge structure) were Cu(II). Existence of Cu-N bondings with coordination numbers (CNs) of 3-4 for copper extracted in the RTIL was found by EXAFS (extended X-ray absorption fine structural) spectroscopy. Interestingly, chelation of Cu(II) with 1-methylimidazole (MIm) in the RTIL during extraction was also observed by 1H NMR (nuclear magnetic resonance). At least two possible reaction paths for the rapid extraction of nanosize copper pollutants with the RTIL might occur: (1) an enhanced dissolution of nanosize CuO (to form Cu2+) and (2) formation of [Cu(MIm)4(H2O)2]2+ that acted as a carrier of copper into the RTIL matrix.

Details

Language :
English
ISSN :
0013-936X
Volume :
40
Issue :
15
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
16913135
Full Text :
https://doi.org/10.1021/es060034s