Back to Search
Start Over
[A robust approach to independent component analysis and its application in the analysis of magnetoencephalographic data].
- Source :
-
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi [Sheng Wu Yi Xue Gong Cheng Xue Za Zhi] 2006 Jun; Vol. 23 (3), pp. 648-52. - Publication Year :
- 2006
-
Abstract
- Independent component analysis (ICA) is a new method of signal statistical processing and widely used in many fields. We face several problems such as the different nature of source signals (e.g. both super-Gaussian and sub-Gaussian sources exist), unknown number of sources and contamination of the sensor signals with a high level of additive noise in the analysis of signal. A robust approach was proposed to solve these problems in this paper. Firstly, observations (noisy data) possessing high dimensionality were preprocessed and decomposed into a source signal subspace and a noise subspace. Then the number of sources was got through the cross-validation method, and this solved the problem that ICA could not confirm the number of sources. At last the transformed low-dimensional source signals were further separated with the fast and stable ICA algorithm. Through the analysis of artificially synthesized data and the real-world Magnetoencephalographic data, the efficacy of this robust approach was illustrated.
Details
- Language :
- Chinese
- ISSN :
- 1001-5515
- Volume :
- 23
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
- Publication Type :
- Academic Journal
- Accession number :
- 16856408