Back to Search
Start Over
Photoconductive properties of organic-inorganic hybrid films of layered perovskite-type niobate.
- Source :
-
The journal of physical chemistry. B [J Phys Chem B] 2005 Jun 30; Vol. 109 (25), pp. 12410-6. - Publication Year :
- 2005
-
Abstract
- A hybrid film of layered niobate and an organic amphiphile was prepared by the Langmuir-Blodgett (LB) method. Trimethylammonium-exchanged perovskite-type niobates ((CH(3))(3)NHSr(2)Nb(3)O(10)) were exfoliative to form an aqueous suspension. A monolayer of octadecylamine was produced on such an aqueous dispersion as a template for a hybrid film. A hybrid film was transferred as a Y-type LB film onto a hydrophilic glass plate or an ITO substrate. The structure of a deposited film was investigated with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic force microscopy (AFM) measurements, indicating a layer-by-layer structure with a single or double sheet of niobate as an inorganic composite. From the cyclic voltammogram on an ITO electrode modified with the Y-type 10 layered film, the lower edge of the conduction band of a niobate layer was determined to be - 0.6 V (vs Ag/AgCl). ac impedance and dc measurements were carried out on 1, 5, and 10-layered LB films (2 mm (electrode spacing) x 8 mm (width)) with aluminum electrodes. The freshly deposited samples behaved as an insulator under the illumination of 280 nm light (2.04 x 10(16) quanta s(-1)). Photoconductivities appeared, however, when they were preirradiated with a 150 W Xe lamp (ca. 2 x 10(18) quanta s(-1)) for 0.5-8.5 h. The process was denoted as photomodification. From the FT-IR and XRD results, it was deduced that the photomodification of LB films caused the decomposition of organic templates (octadecylammonium) accompanied by the collapse of layer-by-layer structures. dc analyses on the 5- and 10-layered films after photomodification also showed that they behaved as a photosemiconductor under UV light illumination.
Details
- Language :
- English
- ISSN :
- 1520-6106
- Volume :
- 109
- Issue :
- 25
- Database :
- MEDLINE
- Journal :
- The journal of physical chemistry. B
- Publication Type :
- Academic Journal
- Accession number :
- 16852536
- Full Text :
- https://doi.org/10.1021/jp0505476