Back to Search Start Over

Rational design of peptide inhibitors of the sarcoplasmic reticulum calcium pump.

Authors :
Afara MR
Trieber CA
Glaves JP
Young HS
Source :
Biochemistry [Biochemistry] 2006 Jul 18; Vol. 45 (28), pp. 8617-27.
Publication Year :
2006

Abstract

The sequence of phospholamban (PLB) is practically invariant among mammalian species. The hydrophobic transmembrane domain has 10 leucine and 8 isoleucine residues. Two roles have been proposed for the leucines; one subset stabilizes PLB oligomers, while a second subset physically interacts with SERCA. On the basis of the sequence of the PLB transmembrane domain, we chemically synthesized a series of peptides and tested their ability to regulate SERCA in reconstituted membranes. In all, eight peptides were studied: a peptide corresponding to the null-cysteine transmembrane domain of PLB (TM-Ala-PLB), two polyleucine peptides (Leu18 and Leu24), polyalanine peptides containing 4, 7, and 12 leucine residues (Leu4, Leu7, and Leu12, respectively), and a polyalanine peptide containing the 9 leucine residues present in the transmembrane domain of PLB with and without the essential Asn34 residue (Asn1Leu9 and Leu9, respectively). With the exception of Leu18, co-reconstitution of the peptides revealed effects on the apparent calcium affinity of SERCA. The TM-Ala-PLB peptide possessed approximately 70% of the inhibitory function of wild-type PLB. The remaining peptides exhibited significant inhibitory activity decreasing in the following order: Leu12, Leu9, Leu24, Leu7, and Leu4. Replacing Asn34 of PLB in the Leu9 peptide resulted in superinhibition of SERCA. On the basis of these observations, we conclude that a partial requirement for SERCA inhibition is met by a simple hydrophobic surface on a transmembrane alpha-helix. In addition, the superinhibition observed for the Asn34-containing peptide suggests that the model peptides mimic the inhibitory properties of PLB. A model is presented in which surface complementarity around key amino acid positions is enhanced in the interaction with SERCA.

Details

Language :
English
ISSN :
0006-2960
Volume :
45
Issue :
28
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
16834336
Full Text :
https://doi.org/10.1021/bi0523761