Back to Search Start Over

Accurate global potential energy surface and reaction dynamics for the ground state of HgBr2.

Authors :
Balabanov NB
Shepler BC
Peterson KA
Source :
The journal of physical chemistry. A [J Phys Chem A] 2005 Oct 06; Vol. 109 (39), pp. 8765-73.
Publication Year :
2005

Abstract

A global potential energy surface (PES) for the (1)A' ground state of HgBr(2) has been constructed in order to determine the rate constants for atmospherically important reactions involving mercury and bromine. The total energy of HgBr(2) was calculated by the multireference configuration interaction level of theory with series of correlation consistent basis sets up to quadruple-zeta quality with subsequent extrapolation to the complete basis set limit. An additive correction for spin-orbit coupling was also included. The global PES was represented piecewise by interpolating three separate parts of the surface with the reproducing kernel Hilbert space method and connecting them smoothly by switch functions. Quasiclassical trajectory calculations carried out on the surface yielded 298 K thermal rate constants of 3.89 x 10(-11) cm(3)/(mol.s) for the abstraction reaction HgBr + Br --> Hg + Br(2), 2.98 x 10(-11) cm(3)/(mol.s) for the recombination reaction Br + HgBr --> HgBr(2), and 3.97 x 10(-11) cm(3)/(mol.s) for the exchange reaction Br + HgBr --> BrHg + Br. The insertion reaction Hg + Br(2) --> HgBr(2) was found to have a high barrier of 27.2 kcal/mol and a very small rate constant of just 2.74 x 10(-31) cm(3)/(mol.s) determined by the microcanonical variational transition state theory method. The implications of the obtained results to the description of the mechanism of recently observed polar tropospheric mercury depletion events are briefly discussed.

Details

Language :
English
ISSN :
1089-5639
Volume :
109
Issue :
39
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
16834279
Full Text :
https://doi.org/10.1021/jp053415l