Back to Search Start Over

Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application.

Authors :
Shi C
Yao Y
Yang Y
Pei Q
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2006 Jul 12; Vol. 128 (27), pp. 8980-6.
Publication Year :
2006

Abstract

Low band gap conjugated polymers with proper energy levels for charge transfer are required to achieve high-efficiency polymer solar cells. We report the synthesis and characterization of two new regioregular copolymers that are based on 3-alkoxythiophene monomers: poly(3-octylthiophene-2,5-diyl-co-3-decyloxythiophene-2,5-diyl) (POT-co-DOT) and poly{(9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-decyloxythien-2-yl)-2,1,3-benzothiadiazole]-5',5' '-diyl} (PF-co-DTB). Compared to the alkyl substituents, the alkoxy side chains on the thiophene units can effectively lower the band gap of copolymers and enhance the charge transfer to electron acceptors such as (6,6)-phenyl C(61)-butyric acid methyl ester (PCBM). The chemical structure and regioregularity of the copolymers were confirmed by NMR. Both copolymers are readily soluble in organic solvents and form high-quality thin films. Electrochemical and photophysical studies reveal band gaps of 1.64 eV for POT-co-DOT and 1.78 eV for PF-co-DTB. Bulk heterojunction photovoltaic devices were fabricated using blends of these copolymers with PCBM as the active layer, ITO-glass as the anode, and aluminum as the cathode. Power conversion efficiency of 1.6% was obtained under simulated solar light AM 1.5 G (100 mW/cm(2)) from a solar cell with an active layer containing 20 wt % PF-co-DTB and 80 wt % PCBM. Regioregular poly(3-decyloxythiophene-2,5-diyl) (P3DOT) was also studied for comparison purposes.

Details

Language :
English
ISSN :
0002-7863
Volume :
128
Issue :
27
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
16819895
Full Text :
https://doi.org/10.1021/ja061664x