Back to Search
Start Over
Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2006 Jun 13; Vol. 103 (24), pp. 9333-8. Date of Electronic Publication: 2006 Jun 05. - Publication Year :
- 2006
-
Abstract
- There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mice and SERT or NET knockout mice still self-administer cocaine and/or display conditioned place preference (CPP) to cocaine, which led to the reevaluation of the DA hypothesis and the proposal of redundant reward pathways. To study the role of DAT in cocaine reward, we have generated a knockin mouse line carrying a functional DAT that is insensitive to cocaine. In these mice, cocaine suppressed locomotor activity, did not elevate extracellular DA in the nucleus accumbens, and did not produce reward as measured by CPP. This result suggests that blockade of DAT is necessary for cocaine reward in mice with a functional DAT. This mouse model is unique in that it is specifically designed to differentiate the role of DAT from the roles of NET and SERT in cocaine-induced biochemical and behavioral effects.
- Subjects :
- Animals
Brain anatomy & histology
Brain metabolism
Cocaine pharmacology
Conditioning, Psychological
Dopamine metabolism
Dopamine Plasma Membrane Transport Proteins genetics
Gene Targeting
In Vitro Techniques
Mice
Mice, Transgenic
Microdialysis
Motor Activity drug effects
Motor Activity physiology
Neurons cytology
Neurons metabolism
Nucleus Accumbens metabolism
Patch-Clamp Techniques
Cocaine metabolism
Dopamine Plasma Membrane Transport Proteins metabolism
Reward
Subjects
Details
- Language :
- English
- ISSN :
- 0027-8424
- Volume :
- 103
- Issue :
- 24
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 16754872
- Full Text :
- https://doi.org/10.1073/pnas.0600905103