Back to Search Start Over

Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter.

Authors :
Chen R
Tilley MR
Wei H
Zhou F
Zhou FM
Ching S
Quan N
Stephens RL
Hill ER
Nottoli T
Han DD
Gu HH
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2006 Jun 13; Vol. 103 (24), pp. 9333-8. Date of Electronic Publication: 2006 Jun 05.
Publication Year :
2006

Abstract

There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mice and SERT or NET knockout mice still self-administer cocaine and/or display conditioned place preference (CPP) to cocaine, which led to the reevaluation of the DA hypothesis and the proposal of redundant reward pathways. To study the role of DAT in cocaine reward, we have generated a knockin mouse line carrying a functional DAT that is insensitive to cocaine. In these mice, cocaine suppressed locomotor activity, did not elevate extracellular DA in the nucleus accumbens, and did not produce reward as measured by CPP. This result suggests that blockade of DAT is necessary for cocaine reward in mice with a functional DAT. This mouse model is unique in that it is specifically designed to differentiate the role of DAT from the roles of NET and SERT in cocaine-induced biochemical and behavioral effects.

Details

Language :
English
ISSN :
0027-8424
Volume :
103
Issue :
24
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
16754872
Full Text :
https://doi.org/10.1073/pnas.0600905103