Back to Search
Start Over
The native T-type calcium current in relay neurons of the primate thalamus.
- Source :
-
Neuroscience [Neuroscience] 2006 Aug 11; Vol. 141 (1), pp. 453-61. Date of Electronic Publication: 2006 May 11. - Publication Year :
- 2006
-
Abstract
- The generation of thalamic bursts depends upon calcium currents that flow through transiently open (T)-type calcium channels. In this study, we characterized the native T-type calcium current underlying thalamic burst responses in the macaque monkey. Current clamp recordings from lateral geniculate nucleus (LGN) slices showed characteristic burst responses when relay cells were depolarized from relatively hyperpolarized membrane potentials. These bursts could also be elicited by stimulation of excitatory synaptic inputs to LGN cells. Under voltage clamp conditions, the inactivation kinetics of native currents recorded from primate LGN neurons showed consistency with T-type currents recorded in other mammals and in expression systems. Real-time reverse transcriptase PCR performed on RNA isolated from the LGN (including tissues isolated from magnocellular and parvocellular laminae) detected voltage-dependent calcium channel (Ca(v)) 3.1, Ca(v) 3.2, and Ca(v) 3.3 channel transcripts. Ca(v) 3.1 occurred at relatively higher expression than other isoforms, consistent with in situ hybridization studies in rats, indicating that the molecular basis for burst firing in thalamocortical systems is an important conserved property of primate physiology. Since thalamic bursts have been observed during visual processing as well as in a number of CNS disorders, studies of the expression and modulation of these currents at multiple levels are critical for understanding their role in vision and for the discovery of new treatments for disruptions of thalamic rhythms.
- Subjects :
- Animals
Calcium Channels, T-Type classification
Calcium Channels, T-Type genetics
Dose-Response Relationship, Radiation
Electric Stimulation methods
Gene Expression physiology
In Vitro Techniques
Macaca fascicularis
Membrane Potentials physiology
Membrane Potentials radiation effects
RNA, Messenger metabolism
Reverse Transcriptase Polymerase Chain Reaction methods
Calcium Channels, T-Type physiology
Geniculate Bodies cytology
Neurons physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0306-4522
- Volume :
- 141
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 16690211
- Full Text :
- https://doi.org/10.1016/j.neuroscience.2006.03.042