Back to Search Start Over

Alternative Path Mediated ATP Synthesis in Roots of Pisum sativum upon Nitrogen Supply.

Authors :
de Visser R
Brouwer KS
Posthumus F
Source :
Plant physiology [Plant Physiol] 1986 Feb; Vol. 80 (2), pp. 295-300.
Publication Year :
1986

Abstract

Changes in the efficiency of root respiration were examined on intact plants of Pisum sativum L. cv Rondo after addition of nitrate or ammonium to the culture solutions. Nitrate was absorbed immediately after addition and elicited a respiratory rise (O(2)-uptake as well as CO(2)-production) to 160% at most. This occurred both in roots of plants fixing N(2) and in those of non-nodulated plants pregrown for 1 or 2 weeks on a nitrogen-free culture solution. In older plants, used after 2 weeks of N-free growth, the full capacity of the cytochrome path was engaged in root respiration. This was demonstrated by the absence of an effect of the uncoupler carbonylcyanide m-chlorophenylhydrazone in the presence of 25 millimolar salicylhydroxamate, an inhibitor of the alternative path. In these plants more than 90% of the nitrate-induced stimulation of root respiration was salicylhydroxamate-sensitive. In young plants, used after 1 week of N-free growth, the cytochrome path was not saturated. Its activity increased instantaneously at the expense of alternative path activity, which initially dropped to zero and subsequently increased to 160% of the control 7 hours after nitrate supply. The rate of photosynthesis rose to 120% of the control, but not before 1 hour after nitrate supply, suggesting that the stimulation of root respiration was not due to a higher rate of photosynthesis. Experiments with plants grown with a split-root system showed that respiration rate and alternative path activity only increased in the root halves exposed to nitrogen. Ammonium was equally effective as nitrate in stimulating root respiration. These results lead to the conclusion that alternative-path mediated root respiration contributes to synthesis of ATP during at least the first 24 hours following nitrogen supply.

Details

Language :
English
ISSN :
0032-0889
Volume :
80
Issue :
2
Database :
MEDLINE
Journal :
Plant physiology
Publication Type :
Academic Journal
Accession number :
16664616
Full Text :
https://doi.org/10.1104/pp.80.2.295