Back to Search
Start Over
Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1-/- mouse islets.
- Source :
-
American journal of physiology. Endocrinology and metabolism [Am J Physiol Endocrinol Metab] 2006 Sep; Vol. 291 (3), pp. E525-35. Date of Electronic Publication: 2006 Apr 25. - Publication Year :
- 2006
-
Abstract
- Neural and endocrine factors (i.e., Ach and GLP-1) restore defective glucose-stimulated insulin release in pancreatic islets lacking sulfonylurea type 1 receptors (SUR1(-/-)) (Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Najafi H, Buettger CW, Collins HW, Carr RD, Magnuson MA, and Matschinsky FM. Am J Physiol Endocrinol Metab 286: E834-E843, 2004). The goal of the present study was to assess fuel-induced respiration in SUR1(-/-) islets and to correlate it with changes in intracellular Ca(2+), insulin, and glucagon secretion. By use of a method based on O(2) quenching of phosphorescence, the O(2) consumption rate (OCR) of isolated islets was measured online in a perifusion system. Basal insulin release (IR) was 7-10 times higher in SUR1(-/-) compared with control (CON) islets, but the OCR was comparable. The effect of high glucose (16.7 mM) on IR and OCR was markedly reduced in SUR1(-/-) islets compared with CON. Ach (0.5 microM) in the presence of 16.7 mM glucose caused a large burst of IR in CON and SUR1(-/-) islets with minor changes in OCR in both groups of islets. In SUR1(-/-) islets, high glucose failed to inhibit glucagon secretion during stimulation with amino acids or Ach. We conclude that 1) reduced glucose responsiveness of SUR1(-/-) islets may be in part due to impaired energetics, as evidenced by significant decrease in glucose-stimulated OCR; 2) elevated intracellular Ca(2+) levels may contribute to altered insulin and glucagon secretion in SUR1(-/-) islets; and 3) The amplitudes of the changes in OCR during glucose and Ach stimulation do not correlate with IR in normal and SUR1(-/-) islets suggesting that the energy requirements for exocytosis are minor compared with other ATP-consuming reactions.
- Subjects :
- ATP-Binding Cassette Transporters antagonists & inhibitors
Acetylcholine pharmacology
Acetylcholinesterase genetics
Amino Acids pharmacology
Animals
Calcium metabolism
Cell Respiration drug effects
Gene Expression genetics
Glucagon metabolism
Glucose Transporter Type 2 genetics
Glyburide pharmacology
Insulin metabolism
Insulin Secretion
Islets of Langerhans drug effects
Kv1.3 Potassium Channel
Large-Conductance Calcium-Activated Potassium Channel beta Subunits genetics
Mice
Mice, Inbred C57BL
Mice, Knockout
Multidrug Resistance-Associated Proteins antagonists & inhibitors
Oxygen Consumption drug effects
Potassium Channels, Inwardly Rectifying genetics
RNA, Messenger genetics
RNA, Messenger metabolism
Receptors, Drug
Sulfonylurea Receptors
ATP-Binding Cassette Transporters genetics
Cell Respiration physiology
Cholinergic Fibers physiology
Glucose pharmacology
Hormones metabolism
Islets of Langerhans metabolism
Multidrug Resistance-Associated Proteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 0193-1849
- Volume :
- 291
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Endocrinology and metabolism
- Publication Type :
- Academic Journal
- Accession number :
- 16638820
- Full Text :
- https://doi.org/10.1152/ajpendo.00579.2005