Back to Search
Start Over
Effects of chronic alpha-adrenergic receptor blockade on peripheral nerve conduction, hypoxic resistance, polyols, Na(+)-K(+)-ATPase activity, and vascular supply in STZ-D rats.
- Source :
-
Diabetes [Diabetes] 1991 Dec; Vol. 40 (12), pp. 1652-8. - Publication Year :
- 1991
-
Abstract
- The effects of alpha-receptor blockade on nerve conduction, hypoxic resistance, ouabain-sensitive Na(+)-K(+)-ATPase, nerve polyols, and capillary density were examined in streptozocin-induced diabetic (STZ-D) rats. Nondiabetic and untreated diabetic control groups were used. Diabetes duration was 2 mo. There were two treated diabetic groups. A "prevention" group received 5 mg/kg prazosin for 2 mo from the induction of diabetes. A "reversal" group was untreated for the 1st mo and was given prazosin for the subsequent month. Conduction was measured in motor nerves supplying tibialis anterior and gastrocnemius muscles and sensory saphenous nerve. Diabetes resulted in 15-29% reductions in conduction velocity (P less than 0.01). In the prevention group, conduction deficits were minimal compared with untreated diabetes (P less than 0.01). In the reversal group, motor conduction was also substantially improved, although sensory conduction was not significantly affected. In vitro measurement of sciatic nerve hypoxic resistance revealed a 49% increase in the time taken for compound action potential amplitude to reach half its initial value with diabetes (P less than 0.01). This was largely prevented by prazosin treatment (P less than 0.01), although treatment had a lesser effect in the reversal group. Treatment had no effect on nerve polyol levels or Na(+)-K(+)-ATPase activity. Functional improvements with prazosin were probably based on increased vasa nervorum perfusion. There was a 20% elevation of endoneurial capillary density (P less than 0.01) in both prevention and reversal groups. We conclude that vascular factors play an important role in the etiology of experimental diabetic neuropathy, and functional changes may be corrected by chronic vasodilator treatment.
- Subjects :
- Action Potentials drug effects
Animals
Capillaries drug effects
Capillaries physiology
Capillaries physiopathology
Cell Hypoxia physiology
Diabetic Neuropathies physiopathology
Electric Stimulation
In Vitro Techniques
Male
Motor Neurons drug effects
Neurons, Afferent drug effects
Ouabain pharmacology
Rats
Rats, Inbred Strains
Receptors, Adrenergic, beta drug effects
Receptors, Adrenergic, beta physiology
Regional Blood Flow drug effects
Regression Analysis
Sciatic Nerve blood supply
Sciatic Nerve drug effects
Alcohols metabolism
Diabetes Mellitus, Experimental physiopathology
Diabetic Neuropathies prevention & control
Motor Neurons physiology
Neural Conduction drug effects
Neurons, Afferent physiology
Prazosin pharmacology
Sciatic Nerve physiopathology
Sodium-Potassium-Exchanging ATPase metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0012-1797
- Volume :
- 40
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Diabetes
- Publication Type :
- Academic Journal
- Accession number :
- 1661693
- Full Text :
- https://doi.org/10.2337/diab.40.12.1652