Back to Search Start Over

Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome.

Authors :
Coucke PJ
Willaert A
Wessels MW
Callewaert B
Zoppi N
De Backer J
Fox JE
Mancini GM
Kambouris M
Gardella R
Facchetti F
Willems PJ
Forsyth R
Dietz HC
Barlati S
Colombi M
Loeys B
De Paepe A
Source :
Nature genetics [Nat Genet] 2006 Apr; Vol. 38 (4), pp. 452-7. Date of Electronic Publication: 2006 Mar 19.
Publication Year :
2006

Abstract

Arterial tortuosity syndrome (ATS) is an autosomal recessive disorder characterized by tortuosity, elongation, stenosis and aneurysm formation in the major arteries owing to disruption of elastic fibers in the medial layer of the arterial wall. Previously, we used homozygosity mapping to map a candidate locus in a 4.1-Mb region on chromosome 20q13.1 (ref. 2). Here, we narrowed the candidate region to 1.2 Mb containing seven genes. Mutations in one of these genes, SLC2A10, encoding the facilitative glucose transporter GLUT10, were identified in six ATS families. GLUT10 deficiency is associated with upregulation of the TGFbeta pathway in the arterial wall, a finding also observed in Loeys-Dietz syndrome, in which aortic aneurysms associate with arterial tortuosity. The identification of a glucose transporter gene responsible for altered arterial morphogenesis is notable in light of the previously suggested link between GLUT10 and type 2 diabetes. Our data could provide new insight on the mechanisms causing microangiopathic changes associated with diabetes and suggest that therapeutic compounds intervening with TGFbeta signaling represent a new treatment strategy.

Details

Language :
English
ISSN :
1061-4036
Volume :
38
Issue :
4
Database :
MEDLINE
Journal :
Nature genetics
Publication Type :
Academic Journal
Accession number :
16550171
Full Text :
https://doi.org/10.1038/ng1764