Back to Search Start Over

Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography.

Authors :
Bourgeois D
Vallone B
Arcovito A
Sciara G
Schotte F
Anfinrud PA
Brunori M
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2006 Mar 28; Vol. 103 (13), pp. 4924-9. Date of Electronic Publication: 2006 Mar 17.
Publication Year :
2006

Abstract

Work carried out over the last 30 years unveiled the role of structural dynamics in controlling protein function. Cavity networks modulate structural dynamics trajectories and are functionally relevant; in globins they have been assigned a role in ligand migration and docking. These findings raised renewed interest for time-resolved structural investigations of myoglobin (Mb), a simple heme protein displaying a photosensitive iron-ligand bond. Photodissociation of MbCO generates a nonequilibrium population of protein structures relaxing over a time range extending from picoseconds to milliseconds. This process triggers ligand migration to matrix cavities with clear-cut effects on the rate and yield of geminate rebinding. Here, we report subnanosecond time-resolved Laue diffraction data on the triple mutant YQR-Mb [Leu-29(B10)Tyr, His-64(E7)Gln, Thr-67(E10)Arg] that depict the sequence of structural events associated with heme and protein relaxation from 100 ps to 316 ns and above. The photodissociated ligand rapidly (<0.1 ns) populates the Xe-binding cavity distal to the heme. Moreover, the heme relaxation toward the deoxy configuration is heterogeneous, with a slower phase ( approximately ns) evident in these experiments. Damping of the heme response appears to result from a strain exerted by the E-helix via the CD-turn; Phe-43(CD1), in close contact with heme, opposes tilt until the strain is relieved. A comparison with crystallographic data on wild-type Mb and mutants Leu(29)Phe or Leu(29)Trp suggests that the internal structure controls the rate and amplitude of the relaxation events. A correlation between structural dynamics as unveiled by Laue crystallography and functional properties of Mb is presented.

Details

Language :
English
ISSN :
0027-8424
Volume :
103
Issue :
13
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
16547137
Full Text :
https://doi.org/10.1073/pnas.0508880103