Back to Search
Start Over
Determinants of conformational dimerization of Mad2 and its inhibition by p31comet.
- Source :
-
The EMBO journal [EMBO J] 2006 Mar 22; Vol. 25 (6), pp. 1273-84. Date of Electronic Publication: 2006 Mar 09. - Publication Year :
- 2006
-
Abstract
- The spindle assembly checkpoint (SAC) monitors chromosome attachment to spindle microtubules. SAC proteins operate at kinetochores, scaffolds mediating chromosome-microtubule attachment. The ubiquitous SAC constituents Mad1 and Mad2 are recruited to kinetochores in prometaphase. Mad2 sequesters Cdc20 to prevent its ability to mediate anaphase onset. Its function is counteracted by p31comet (formerly CMT2). Upon binding Cdc20, Mad2 changes its conformation from O-Mad2 (Open) to C-Mad2 (Closed). A Mad1-bound C-Mad2 template, to which O-Mad2 binds prior to being converted into Cdc20-bound C-Mad2, assists this process. A molecular understanding of this prion-like property of Mad2 is missing. We characterized the molecular determinants of the O-Mad2:C-Mad2 conformational dimer and derived a rationalization of the binding interface in terms of symmetric and asymmetric components. Mutation of individual interface residues abrogates the SAC in Saccharomyces cerevisiae. NMR chemical shift perturbations indicate that O-Mad2 undergoes a major conformational rearrangement upon binding C-Mad2, suggesting that dimerization facilitates the structural conversion of O-Mad2 required to bind Cdc20. We also show that the negative effects of p31comet on the SAC are based on its competition with O-Mad2 for C-Mad2 binding.
- Subjects :
- Adaptor Proteins, Signal Transducing
Amino Acid Sequence
Binding Sites
Calcium-Binding Proteins genetics
Cdc20 Proteins
Cell Cycle Proteins genetics
Dimerization
Humans
Kinetochores
Mad2 Proteins
Models, Molecular
Molecular Sequence Data
Mutation
Nuclear Magnetic Resonance, Biomolecular
Nuclear Proteins
Repressor Proteins genetics
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae growth & development
Saccharomyces cerevisiae metabolism
Sequence Homology, Amino Acid
Calcium-Binding Proteins antagonists & inhibitors
Calcium-Binding Proteins metabolism
Carrier Proteins pharmacology
Cell Cycle Proteins antagonists & inhibitors
Cell Cycle Proteins metabolism
Cell Cycle Proteins pharmacology
Protein Conformation
Repressor Proteins antagonists & inhibitors
Repressor Proteins metabolism
Spindle Apparatus physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0261-4189
- Volume :
- 25
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- The EMBO journal
- Publication Type :
- Academic Journal
- Accession number :
- 16525508
- Full Text :
- https://doi.org/10.1038/sj.emboj.7601033