Back to Search Start Over

Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice.

Authors :
Miyoshi T
Li Y
Shih DM
Wang X
Laubach VE
Matsumoto AH
Helm GA
Lusis AJ
Shi W
Source :
Life sciences [Life Sci] 2006 Jul 04; Vol. 79 (6), pp. 525-31. Date of Electronic Publication: 2006 Mar 03.
Publication Year :
2006

Abstract

The inducible nitric oxide synthase (iNOS) is abundantly expressed by smooth muscle cells and macrophages in atherosclerotic lesions. Apolipoprotein E-deficient (apoE(-/-)) mice develop early and advanced atherosclerotic lesions. The role of iNOS in both early and advanced atherosclerotic formation was determined in apoE(-/-) mice. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 12 weeks of age on chow diet, iNOS(-/-)/apoE(-/-) mice developed comparable sizes of early atherosclerotic lesions in the aortic root as did iNOS(+/+)/apoE(-/-) mice (30,993+/-4746 vs. 26,648+/-6815 microm(2)/section; P=0.608). After being fed the Western diet for 12 weeks, iNOS(-/-)/apoE(-/-) mice developed significantly smaller advanced lesions than iNOS(+/+)/apoE(-/-) mice (458,734+/-14,942 vs. 519,570+/-22,098 microm(2)/section; P=0.029). This reduction in lesion formation could not be explained by differences in plasma lipid levels. To examine whether iNOS contributed to LDL oxidation, smooth muscle cells were isolated from the aorta, activated with TNF-alpha, and then incubated with native LDL in the absence or presence of N-Omega-nitro-L-arginine methyl ester (L-NAME), a specific NOS inhibitor. L-NAME significantly inhibited LDL oxidation by smooth muscle cells from iNOS(+/+)/apoE(-/-) mice (P=0.048), but it had no effect on LDL oxidation by cells from iNOS(-/-)/apoE(-/-) mice. iNOS(-/-)/apoE(-/-) mice had a significantly lower plasma lipoperoxide level on the Western diet (2.74+/-0.23 vs. 3.89+/-0.41 microM MDA; P=0.021) but not on chow diet (1.02+/-0.07 vs. 1.51+/-0.29 microM MDA; P=0.11). Thus, the absence of iNOS-mediated LDL oxidation may contribute to the reduction in advanced lesion formation of iNOS(-/-)/apoE(-/-) mice.

Details

Language :
English
ISSN :
0024-3205
Volume :
79
Issue :
6
Database :
MEDLINE
Journal :
Life sciences
Publication Type :
Academic Journal
Accession number :
16516241
Full Text :
https://doi.org/10.1016/j.lfs.2006.01.043