Back to Search
Start Over
Conversion of linoleic acid into novel oxylipins by the mushroom Agaricus bisporus.
- Source :
-
Lipids [Lipids] 2005 Nov; Vol. 40 (11), pp. 1163-70. - Publication Year :
- 2005
-
Abstract
- Oxylipins are associated with important processes of the fungal life cycle, such as spore formation. Here, we report the formation of FA metabolites in Agaricus bisporus. Incubation of a crude extract of lamellae with linoleic acid (18:2) led to the extensive formation of two oxylipins. They were identified as 8(R)-hydroxy-9Z,12Z-octadecadienoic acid (8-HOD) and 8(R),11 (S)-dihydroxy-9Z,12Z-octadecadienoic acid (8,11-diHOD) by using RP-HPLC, GC-MS, IR, GC-MS analysis of diastereomeric derivatives, and 1H NMR and 13C NMR spectroscopy. Neither compound has been reported before in A. bisporus. Oleic (18:1), alpha-linolenic (18:3n-3), and gamma-linolenic (18:3n-6) acids were converted into their 8-hydroxy derivatives as well, and 18:3n-3 was further metabolized to its 8,11-diol derivative. Reactions with [U-13C]18:2 demonstrated that the compounds 8-HOD and 8,11-diHOD were formed from exogenously supplied 18:2. When [U-13C]8-HOD was supplied, it was not converted into 8,11-diHOD, indicating that it was not an intermediate in the formation of 8,11-diHOD. When a crude extract of A. bisporus was incubated under an atmosphere of 16O2/18O2, the two hydroxyl groups of 8,11-diHOD contained either two 180 atoms or two 60 atoms. Species that contained one of each isotope could not be detected. We propose that the formation of the 8,11-dihydroxy compounds occurs through either an 8,11-endoperoxy, an 8-peroxo free radical, or an 8-hydroperoxy intermediate. In the latter case, the reaction should be catalyzed by dioxygenase with novel specificity.
Details
- Language :
- English
- ISSN :
- 0024-4201
- Volume :
- 40
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Lipids
- Publication Type :
- Academic Journal
- Accession number :
- 16459929
- Full Text :
- https://doi.org/10.1007/s11745-005-1481-2