Back to Search Start Over

Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite.

Authors :
Karadag D
Koc Y
Turan M
Armagan B
Source :
Journal of hazardous materials [J Hazard Mater] 2006 Aug 25; Vol. 136 (3), pp. 604-9. Date of Electronic Publication: 2006 Jan 25.
Publication Year :
2006

Abstract

A study on ion exchange kinetics and equilibrium isotherms of ammonium ion on natural Turkish clinoptilolite (zeolite) was conducted using a batch experiment technique. The effects of relevant parameters, such as temperature, contact time and initial ammonium (NH(4)(+)) concentration were examined, respectively. The pseudo first-order, pseudo second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data. The pseudo second-order kinetic model provided excellent kinetic data fitting (R(2)>0.990) and intraparticle diffusion effects ammonium uptake. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms for ammonium uptake and the Langmuir model agrees very well with experimental data. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined. An examination of the thermodynamic parameters shows that the exchange of ammonium ion by clinoptilolite is a process occurring spontaneously and physical in nature at ambient conditions (25 degrees C). The process is also found to be exothermic. The results indicate that there is a significant potential for the natural Turkish clinoptilolite as an adsorbent material for ammonium removal from aqueous solutions.

Details

Language :
English
ISSN :
0304-3894
Volume :
136
Issue :
3
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
16442711
Full Text :
https://doi.org/10.1016/j.jhazmat.2005.12.042