Back to Search Start Over

Rapamycin alleviates toxicity of different aggregate-prone proteins.

Authors :
Berger Z
Ravikumar B
Menzies FM
Oroz LG
Underwood BR
Pangalos MN
Schmitt I
Wullner U
Evert BO
O'Kane CJ
Rubinsztein DC
Source :
Human molecular genetics [Hum Mol Genet] 2006 Feb 01; Vol. 15 (3), pp. 433-42. Date of Electronic Publication: 2005 Dec 20.
Publication Year :
2006

Abstract

Many neurodegenerative diseases are caused by intracellular, aggregate-prone proteins, including polyglutamine-expanded huntingtin in Huntington's disease (HD) and mutant tau in fronto-temporal dementia/tauopathy. Previously, we showed that rapamycin, an autophagy inducer, enhances mutant huntingtin fragment clearance and attenuated toxicity. Here we show much wider applications for this approach. Rapamycin enhances the autophagic clearance of different proteins with long polyglutamines and a polyalanine-expanded protein, and reduces their toxicity. Rapamycin also reduces toxicity in Drosophila expressing wild-type or mutant forms of tau and these effects can be accounted for by reductions in insoluble tau. Thus, our studies suggest that the scope for rapamycin as a potential therapeutic in aggregate diseases may be much broader than HD or even polyglutamine diseases.

Details

Language :
English
ISSN :
0964-6906
Volume :
15
Issue :
3
Database :
MEDLINE
Journal :
Human molecular genetics
Publication Type :
Academic Journal
Accession number :
16368705
Full Text :
https://doi.org/10.1093/hmg/ddi458