Back to Search
Start Over
Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2006 Jan 13; Vol. 281 (2), pp. 876-84. Date of Electronic Publication: 2005 Nov 18. - Publication Year :
- 2006
-
Abstract
- Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate. In contrast, we found that in the context of full-length PDI, there is an asymmetry in the rate of oxidation of the two active sites. This asymmetry is the result of a dual effect: an enhanced rate of oxidation of the second catalytic (A') domain and the substrate-mediated inhibition of oxidation of the first catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.
- Subjects :
- Binding Sites
Catalysis
Catalytic Domain
Disulfides chemistry
Dose-Response Relationship, Drug
Endoplasmic Reticulum metabolism
Humans
Models, Biological
Mutation
Oxidation-Reduction
Oxidoreductases Acting on Sulfur Group Donors
Oxygen chemistry
Plasmids metabolism
Protein Binding
Protein Folding
Protein Structure, Tertiary
Ribonuclease, Pancreatic chemistry
Ribonucleases chemistry
Saccharomyces cerevisiae metabolism
Substrate Specificity
Thioredoxins chemistry
Time Factors
Glycoproteins chemistry
Oxidoreductases chemistry
Protein Disulfide-Isomerases chemistry
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae Proteins chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 281
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 16368681
- Full Text :
- https://doi.org/10.1074/jbc.M511764200