Back to Search Start Over

Acid-, base-, and lewis-acid-catalyzed heterolysis of methoxide from an alpha-hydroxy-beta-methoxy radical: models for reactions catalyzed by coenzyme B12-dependent diol dehydratase.

Authors :
Xu L
Newcomb M
Source :
The Journal of organic chemistry [J Org Chem] 2005 Nov 11; Vol. 70 (23), pp. 9296-303.
Publication Year :
2005

Abstract

[Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.

Details

Language :
English
ISSN :
0022-3263
Volume :
70
Issue :
23
Database :
MEDLINE
Journal :
The Journal of organic chemistry
Publication Type :
Academic Journal
Accession number :
16268602
Full Text :
https://doi.org/10.1021/jo051349d