Back to Search Start Over

An empirical comparison of nine pattern classifiers.

Authors :
Tran QL
Toh KA
Srinivasan D
Wong KL
Low SQ
Source :
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society [IEEE Trans Syst Man Cybern B Cybern] 2005 Oct; Vol. 35 (5), pp. 1079-91.
Publication Year :
2005

Abstract

There are many learning algorithms available in the field of pattern classification and people are still discovering new algorithms that they hope will work better. Any new learning algorithm, beside its theoretical foundation, needs to be justified in many aspects including accuracy and efficiency when applied to real life problems. In this paper, we report the empirical comparison of a recent algorithm RM, its new extensions and three classical classifiers in different aspects including classification accuracy, computational time and storage requirement. The comparison is performed in a standardized way and we believe that this would give a good insight into the algorithm RM and its extension. The experiments also show that nominal attributes do have an impact on the performance of those compared learning algorithms.

Details

Language :
English
ISSN :
1083-4419
Volume :
35
Issue :
5
Database :
MEDLINE
Journal :
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Publication Type :
Report
Accession number :
16240781
Full Text :
https://doi.org/10.1109/tsmcb.2005.847745