Back to Search
Start Over
Oxymetazoline inhibits proinflammatory reactions: effect on arachidonic acid-derived metabolites.
- Source :
-
The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 2006 Feb; Vol. 316 (2), pp. 843-51. Date of Electronic Publication: 2005 Oct 12. - Publication Year :
- 2006
-
Abstract
- The nasal decongestant oxymetazoline effectively reduces rhinitis symptoms. We hypothesized that oxymetazoline affects arachidonic acid-derived metabolites concerning inflammatory and oxidative stress-dependent reactions. The ability of oxymetazoline to model pro- and anti-inflammatory and oxidative stress responses was evaluated in cell-free systems, including 5-lipoxygenase (5-LO) as proinflammatory, 15-lipoxygenase (15-LO) as anti-inflammatory enzymes, and oxidation of methionine by agglomerates of ultrafine carbon particles (UCPs), indicating oxidative stress. In a cellular approach using canine alveolar macrophages (AMs), the impact of oxymetazoline on phospholipase A(2) (PLA(2)) activity, respiratory burst and synthesis of prostaglandin E(2) (PGE(2)), 15(S)-hydroxy-eicosatetraenoic acid (15-HETE), leukotriene B(4) (LTB(4)), and 8-isoprostane was measured in the absence and presence of UCP or opsonized zymosan as particulate stimulants. In cell-free systems, oxymetazoline (0.4-1 mM) inhibited 5-LO but not 15-LO activity and did not alter UCP-induced oxidation of methionine. In AMs, oxymetazoline induced PLA(2) activity and 15-HETE at 1 mM, enhanced PGE(2) at 0.1 mM, strongly inhibited LTB(4) and respiratory burst at 0.4/0.1 mM (p < 0.05), but did not affect 8-isoprostane formation. In contrast, oxymetazoline did not alter UCP-induced PLA(2) activity and PGE(2) and 15-HETE formation in AMs but inhibited UCP-induced LTB(4) formation and respiratory burst at 0.1 mM and 8-isoprostane formation at 0.001 mM (p < 0.05). In opsonized zymosan-stimulated AMs, oxymetazoline inhibited LTB(4) formation and respiratory burst at 0.1 mM (p < 0.05). In conclusion, in canine AMs, oxymetazoline suppressed proinflammatory reactions including 5-LO activity, LTB(4) formation, and respiratory burst and prevented particle-induced oxidative stress, whereas PLA(2) activity and synthesis of immune-modulating PGE(2) and 15-HETE were not affected.
- Subjects :
- Animals
Carbon
Cells, Cultured
Dogs
Lipoxygenase Inhibitors
Macrophages, Alveolar immunology
Macrophages, Alveolar metabolism
Oxidative Stress drug effects
Particle Size
Phagocytosis
Zymosan
Arachidonic Acid metabolism
Macrophages, Alveolar drug effects
Nasal Decongestants pharmacology
Oxymetazoline pharmacology
Respiratory Burst drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 0022-3565
- Volume :
- 316
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- The Journal of pharmacology and experimental therapeutics
- Publication Type :
- Academic Journal
- Accession number :
- 16221739
- Full Text :
- https://doi.org/10.1124/jpet.105.093278