Back to Search Start Over

Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells.

Authors :
VanCompernolle SE
Taylor RJ
Oswald-Richter K
Jiang J
Youree BE
Bowie JH
Tyler MJ
Conlon JM
Wade D
Aiken C
Dermody TS
KewalRamani VN
Rollins-Smith LA
Unutmaz D
Source :
Journal of virology [J Virol] 2005 Sep; Vol. 79 (18), pp. 11598-606.
Publication Year :
2005

Abstract

Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.

Details

Language :
English
ISSN :
0022-538X
Volume :
79
Issue :
18
Database :
MEDLINE
Journal :
Journal of virology
Publication Type :
Academic Journal
Accession number :
16140737
Full Text :
https://doi.org/10.1128/JVI.79.18.11598-11606.2005