Back to Search Start Over

A phosphohexomutase from the archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine.

Authors :
Ray WK
Keith SM
DeSantis AM
Hunt JP
Larson TJ
Helm RF
Kennelly PJ
Source :
Journal of bacteriology [J Bacteriol] 2005 Jun; Vol. 187 (12), pp. 4270-5.
Publication Year :
2005

Abstract

A phosphoserine-containing peptide was identified from tryptic digests from Sulfolobus solfataricus P1 by liquid chromatography-tandem mass spectrometry. Its amino acid sequence closely matched that bracketing Ser-309 in the predicted protein product of open reading frame sso0207, a putative phosphohexomutase, in the genome of S. solfataricus P2. Open reading frame sso0207 was cloned, and its protein product expressed in Escherichia coli. The recombinant protein proved capable of interconverting mannose 1-phosphate and mannose 6-phosphate, as well as glucose 1-phosphate and glucose 6-phosphate, in vitro. It displayed no catalytic activity toward glucosamine 6-phosphate or N-acetylglucosamine 6-phosphate. Models constructed using the X-ray crystal structure of a homologous phosphohexomutase from Pseudomonas aeruginosa predicted that Ser-309 of the archaeal protein lies within the substrate binding site. The presence of a phosphoryl group at this location would be expected to electrostatically interfere with the binding of negatively charged phosphohexose substrates, thus attenuating the catalytic efficiency of the enzyme. Using site-directed mutagenesis, Ser-309 was substituted by aspartic acid to mimic the presence of a phosphoryl group. The V(max) of the mutationally altered protein was only 4% that of the unmodified form. Substitution of Ser-309 with larger, but uncharged, amino acids, including threonine, also decreased catalytic efficiency, but to a lesser extent--three- to fivefold. We therefore predict that phosphorylation of the enzyme in vivo serves to regulate its catalytic activity.

Details

Language :
English
ISSN :
0021-9193
Volume :
187
Issue :
12
Database :
MEDLINE
Journal :
Journal of bacteriology
Publication Type :
Academic Journal
Accession number :
15937189
Full Text :
https://doi.org/10.1128/JB.187.12.4270-4275.2005