Back to Search
Start Over
The aetiology of hypoxaemia in chickens selected for rapid growth.
- Source :
-
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology [Comp Biochem Physiol A Mol Integr Physiol] 2005 May; Vol. 141 (1), pp. 122-31. - Publication Year :
- 2005
-
Abstract
- In comparison to other classes of chickens, broilers selected for rapid growth tend to be hypoxaemic, and many develop congestive heart failure (CHF). In order to explain the physiological mechanisms associated with hypoxaemia in fast-growing broiler chickens (Gallus gallus), this study examined several basic physiological parameters including the blood gas profile in arterial [left atrial (LA)] and mixed venous [right atrial (RA)] blood, systemic oxygen extraction ratio, and intrapulmonary shunt fraction. These parameters were further studied in the context of blood flow in the pulmonary circulation, structural characteristics of the lungs, and cardiac function [measured as cardiac index (CI)]. Overall, broilers had lower arterial and mixed venous blood pO(2) levels and higher pCO(2) levels compared to leghorns. The cardiac index was lower in fast-growing and CHF broilers compared to leghorn chickens or feed-restricted broilers. Systemic oxygen extraction ratio (ER) and intrapulmonary shunt fraction were significantly higher in fast-growing broilers and birds with CHF (all P<0.01). Lungs of all broilers, but not leghorns, contained ectopic, irregular nodular formations located within air spaces. Broilers with clinical signs of hypoxaemia revealed the highest number of these formations in their lung. Taken together, the present findings indicate that key factors associated with the development of hypoxaemia in fast-growing broilers include: (1) high demand for oxygen as evidenced by high oxygen ER; (2) inadequate cardiac output (CO) to fulfill the higher oxygen demands, leading to severe depletion of O(2) in mixed venous blood; and (3) elevated intrapulmonary shunt fraction and possibly dead space associated with specific pathological and anatomical characteristics within the lung.
Details
- Language :
- English
- ISSN :
- 1095-6433
- Volume :
- 141
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
- Publication Type :
- Academic Journal
- Accession number :
- 15936232
- Full Text :
- https://doi.org/10.1016/j.cbpb.2005.04.011