Back to Search
Start Over
Encapsulation of islets in rough surface, hydroxymethylated polysulfone capillaries stimulates VEGF release and promotes vascularization after transplantation.
- Source :
-
Cell transplantation [Cell Transplant] 2005; Vol. 14 (2-3), pp. 97-108. - Publication Year :
- 2005
-
Abstract
- The transplantation of encapsulated islets of Langerhans is one approach to treat type 1 diabetes without the need of lifelong immunosuppression. Capillaries have been used for macroencapsulation because they have a favorable surface-to-volume ratio and because they can be refilled. It is unclear at present whether the outer surface of such capillaries should be smooth to prevent, or rough to promote, cell adhesions. In this study we tested a new capillary made of modified polysulfone (MWCO: 50 kDa) with a rough, open-porous outer surface for islet transplantation. Compared with free-floating islets, encapsulation of freshly isolated rat islets affected neither the kinetics nor the efficiency of glucose-induced insulin release in perifusion experiments. Free-floating islets maintained insulin secretion during cell culture but encapsulated islets gradually lost their glucose responsiveness and released VEGF. This indicated hypoxia in the capillary lumen. Transplantation of encapsulated rat islets into diabetic rats significantly reduced blood glucose concentrations from the first week of implantation. This hypoglycaemic effect persisted until explantation 4 weeks later. Transplantation of encapsulated porcine islets into diabetic rats reduced blood glucose concentrations depending on the islet purity. With semipurified islets a transient reduction of blood glucose concentrations was observed (2, 8, 18, 18 days) whereas with highly purified islets a sustained normoglycaemia was achieved (more than 28 days). Explanted capillaries containing rat islets were covered with blood vessels. Vascularization was also observed on capillaries containing porcine islets that were explanted from normoglycaemic rats. In contrast, on capillaries containing porcine islets that were explanted from hyperglycemic rats a fibrous capsule and lymphocyte accumulations were observed. No vascularization on the surface of transplanted capillaries was observed in the absence of islets. In conclusion, encapsulated islets can release VEGF, which appears to be an important signal for the vascularization of the capillary material. The rough, open-porous outer surface of the polysulfone capillary provides a site well suited for vascular tissue formation and may allow a prolonged islet function after transplantation.
- Subjects :
- Animals
Diabetes Mellitus, Experimental chemically induced
Female
Graft Survival physiology
Islets of Langerhans cytology
Membranes, Artificial
Prostheses and Implants
Rats
Rats, Inbred Lew
Sus scrofa
Transplantation, Homologous
Biocompatible Materials therapeutic use
Diabetes Mellitus, Experimental therapy
Islets of Langerhans metabolism
Neovascularization, Physiologic
Pancreas, Artificial
Polymers
Sulfones
Vascular Endothelial Growth Factor A metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0963-6897
- Volume :
- 14
- Issue :
- 2-3
- Database :
- MEDLINE
- Journal :
- Cell transplantation
- Publication Type :
- Academic Journal
- Accession number :
- 15881419