Back to Search
Start Over
Microbial diversity of benthic mats along a tidal desiccation gradient.
- Source :
-
Environmental microbiology [Environ Microbiol] 2005 Apr; Vol. 7 (4), pp. 593-601. - Publication Year :
- 2005
-
Abstract
- We investigated the influence of desiccation frequency, indicated by tidal position, on microbial community structure, diversity and richness of microbial mats. We independently characterized cyanobacterial, bacterial and archaeal communities, and their spatial variability for two distinct microbial mat systems: subtidal hypersaline mats and intertidal sand flat mats. Community fingerprints based on 16S rDNA were obtained via denaturing gradient gel electrophoresis using polymerase chain reaction primers specific for each group. Fingerprints for all three groups were consistently similar [> or =85% according to Weighted Pair Group with Arithmetic Mean (WPGMA) analysis] along a 1-km-long transect in subtidal mats. Here, pair-wise comparison analysis yielded minimal variation in diversity and richness for all groups. Fingerprints of three sites along an intertidal transect were heterogenous (> or =32% similarity according to WPGMA analysis) with clear shifts in community structure in all three microbial groups. Here, all groups exhibited statistically significant decreases in richness and diversity with tidal height (as desiccation frequency increases). Regression analysis yielded a strong correlation between diversity or richness estimates and position along the tidal gradient, for both Archaea and Bacteria, with Cyanobacteria exhibiting a weaker correlation. These results suggest that desiccation frequency can shape the structure of microbial mat communities, with Archea being least tolerant and Cyanobacteria most tolerant.
- Subjects :
- Biodiversity
DNA Fingerprinting
DNA, Archaeal analysis
DNA, Archaeal genetics
DNA, Archaeal isolation & purification
DNA, Bacterial analysis
DNA, Bacterial genetics
DNA, Bacterial isolation & purification
DNA, Ribosomal analysis
DNA, Ribosomal genetics
DNA, Ribosomal isolation & purification
Desiccation
Genes, rRNA
RNA, Ribosomal, 16S genetics
Seawater microbiology
Water Microbiology
Archaea isolation & purification
Bacteria isolation & purification
Cyanobacteria isolation & purification
Geologic Sediments microbiology
Subjects
Details
- Language :
- English
- ISSN :
- 1462-2912
- Volume :
- 7
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Environmental microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 15816936
- Full Text :
- https://doi.org/10.1111/j.1462-2920.2005.00728.x