Back to Search
Start Over
Proteasome inhibition activates the transport and the ectodomain shedding of TNF-alpha receptors in human endothelial cells.
- Source :
-
Journal of cell science [J Cell Sci] 2005 Mar 01; Vol. 118 (Pt 5), pp. 1061-70. - Publication Year :
- 2005
-
Abstract
- Binding of tumor necrosis factor-alpha (TNF-alpha) to its transmembrane receptors (TNFRs) mediates proinflammatory, apoptotic and survival responses in several cell types including vascular endothelial cells. Because ectodomain shedding of cell surface molecules can be modified by proteasome activity, we studied in human endothelial cells whether the TNF-alpha-TNFRs axis can be regulated by the cleavage of their transmembrane forms in a proteasome-dependent manner. We show that proteasome inhibition increases the release of TNF-alpha and TNFRs from human endothelial cells and decreases their cellular and cell surface expression. This phenomenon involves the transient activation of mitogen-activated protein kinase p42/p44 that triggers the dispersion of TNF-alpha and TNFRs from their intracellular Golgi-complex-associated pool towards the plasma membrane. This results in their enhanced cleavage by TNF-alpha converting enzyme (TACE) because it is reduced by synthetic metalloprotease inhibitors, recombinant TIMP-3 and by a dominant negative form of TACE. In the presence of TACE inhibitor, proteasome inhibition increases the cell surface expression of TNFRs and enhances the sensitivity of these cells to the proapoptotic effect of recombinant TNF-alpha. In conclusion, our data provide evidence that proteasome inhibitors increase TACE-dependent TNFR-shedding in endothelial cells, supporting the use of these molecules in inflammatory disorders. In association with TACE inhibitor, proteasome inhibitors increase the amount of TNFRs at the cell surface and enhance the sensitivity to the proapoptotic effect of TNF-alpha, which might be of interest in the antitumor therapy.
- Subjects :
- ADAM Proteins
ADAM17 Protein
Antineoplastic Agents pharmacology
Apoptosis
Biological Transport
Caspase 3
Caspases metabolism
Cell Membrane metabolism
Cells, Cultured
Endothelium, Vascular cytology
Enzyme Activation
Enzyme Inhibitors pharmacology
Flow Cytometry
Genes, Dominant
Genetic Vectors
Golgi Apparatus metabolism
Humans
Immunoblotting
Immunohistochemistry
Inflammation
Metalloendopeptidases metabolism
Mitogen-Activated Protein Kinase 1 metabolism
Mitogen-Activated Protein Kinase 3 metabolism
Phosphorylation
Proteasome Endopeptidase Complex metabolism
Protein Structure, Tertiary
Recombinant Proteins chemistry
Reverse Transcriptase Polymerase Chain Reaction
Time Factors
Tissue Inhibitor of Metalloproteinase-3 metabolism
Tumor Necrosis Factor-alpha metabolism
Endothelium metabolism
Proteasome Inhibitors
Receptors, Tumor Necrosis Factor metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9533
- Volume :
- 118
- Issue :
- Pt 5
- Database :
- MEDLINE
- Journal :
- Journal of cell science
- Publication Type :
- Academic Journal
- Accession number :
- 15731011
- Full Text :
- https://doi.org/10.1242/jcs.01696