Back to Search Start Over

Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori.

Authors :
Saunders NJ
Boonmee P
Peden JF
Jarvis SA
Source :
BMC genomics [BMC Genomics] 2005 Jan 27; Vol. 6, pp. 9. Date of Electronic Publication: 2005 Jan 27.
Publication Year :
2005

Abstract

Background: Horizontal gene transfer is central to evolution in most bacterial species. The detection of exchanged regions is often based upon analysis of compositional characteristics and their comparison to the organism as a whole. In this study we describe a new methodology combining aspects of established signature analysis with textual analysis approaches. This approach has been used to analyze the two available genome sequences of H. pylori.<br />Results: This gene-by-gene analysis reveals a wide range of genes related to both virulence behaviour and the strain differences that have been relatively recently acquired from other sequence backgrounds. These frequently involve single genes or small numbers of genes that are not associated with transposases or bacteriophage genes, nor with inverted repeats typically used as markers for horizontal transfer. In addition, clear examples of horizontal exchange in genes associated with 'core' metabolic functions were identified, supported by differences between the sequenced strains, including: ftsK, xerD and polA. In some cases it was possible to determine which strain represented the 'parent' and 'altered' states for insertion-deletion events. Different signature component lengths showed different sensitivities for the detection of some horizontally transferred genes, which may reflect different amelioration rates of sequence components.<br />Conclusion: New implementations of signature analysis that can be applied on a gene-by-gene basis for the identification of horizontally acquired sequences are described. These findings highlight the central role of the availability of homologous substrates in evolution mediated by horizontal exchange, and suggest that some components of the supposedly stable 'core genome' may actually be favoured targets for integration of foreign sequences because of their degree of conservation.

Details

Language :
English
ISSN :
1471-2164
Volume :
6
Database :
MEDLINE
Journal :
BMC genomics
Publication Type :
Academic Journal
Accession number :
15676066
Full Text :
https://doi.org/10.1186/1471-2164-6-9