Back to Search Start Over

Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation.

Authors :
Fischer BB
Krieger-Liszkay A
Eggen RL
Source :
Environmental science & technology [Environ Sci Technol] 2004 Dec 01; Vol. 38 (23), pp. 6307-13.
Publication Year :
2004

Abstract

The connection between the mode of toxic action and the genetic response caused by the type I photosensitizer and photosynthesis inhibitor neutral red (NR) and the type II photosensitizer rose bengal (RB) was investigated in the green alga Chlamydomonas reinhardtii. For both photosensitizers, a light intensity-dependent increase in toxicity and expression of the glutathione peroxidase homologous gene (Gpxh) was found. The toxicity of RB was reduced by the singlet oxygen (1O2) quenchers 1,4-diazabicyclo[2.2.2]octane and L-histidine, and the RB-induced Gpxh expression was stimulated in deuterium oxide-supplemented growth medium. These observations clearly indicate the involvement of 1O2 in both toxicity and the genetic response caused by RB. NR up-regulated the expression of typical oxidative and general stress response genes, probably by a type I mechanism, and also strongly induced the Gpxh expression. The stimulating effect of deuterium oxide in the growth medium suggested the involvement of 1O2 also in the NR-induced response. Indeed, an increased 1O2 formation was detected with EPR-spin trapping in NR-treated spinach thylakoids. However, none of the 102 quenchers could reduce the light-dependent toxicity of NR in C. reinhardtii, indicating that NR has a different mode of toxic action than RB.

Details

Language :
English
ISSN :
0013-936X
Volume :
38
Issue :
23
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
15597886
Full Text :
https://doi.org/10.1021/es049673y