Back to Search
Start Over
Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2004 Dec 14; Vol. 101 (50), pp. 17539-44. Date of Electronic Publication: 2004 Dec 06. - Publication Year :
- 2004
-
Abstract
- Inwardly rectifying potassium channels (Kir channels) control cell membrane K(+) fluxes and electrical signaling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus (PNDM). For some mutations, PNDM is accompanied by marked developmental delay, muscle weakness, and epilepsy (severe disease). To determine the molecular basis of these different phenotypes, we expressed wild-type or mutant (R201C, Q52R, or V59G) Kir6.2/sulfonylurea receptor 1 channels in Xenopus oocytes. All mutations increased resting whole-cell K(ATP) currents by reducing channel inhibition by ATP, but, in the simulated heterozygous state, mutations causing PNDM alone (R201C) produced smaller K(ATP) currents and less change in ATP sensitivity than mutations associated with severe disease (Q52R and V59G). This finding suggests that increased K(ATP) currents hyperpolarize pancreatic beta cells and impair insulin secretion, whereas larger K(ATP) currents are required to influence extrapancreatic cell function. We found that mutations causing PNDM alone impair ATP sensitivity directly (at the binding site), whereas those associated with severe disease act indirectly by biasing the channel conformation toward the open state. The effect of the mutation on ATP sensitivity in the heterozygous state reflects the different contributions of a single subunit in the Kir6.2 tetramer to ATP inhibition and to the energy of the open state. Our results also show that mutations in the slide helix of Kir6.2 (V59G) influence the channel kinetics, providing evidence that this domain is involved in Kir channel gating, and suggest that the efficacy of sulfonylurea therapy in PNDM may vary with genotype.
- Subjects :
- ATP-Binding Cassette Transporters
Adenosine Triphosphate metabolism
Adenosine Triphosphate pharmacology
Animals
Diabetes Mellitus metabolism
Diabetes Mellitus physiopathology
Electrophysiology
Humans
Infant, Newborn
Ion Channel Gating drug effects
Kinetics
Multidrug Resistance-Associated Proteins
Nervous System Diseases genetics
Nervous System Diseases metabolism
Nervous System Diseases physiopathology
Oocytes drug effects
Oocytes metabolism
Potassium Channels, Inwardly Rectifying chemistry
Rats
Receptors, Drug
Sulfonylurea Compounds pharmacology
Sulfonylurea Receptors
Xenopus laevis
Diabetes Complications genetics
Diabetes Mellitus congenital
Diabetes Mellitus genetics
Mutation genetics
Nervous System Diseases complications
Potassium Channels, Inwardly Rectifying genetics
Potassium Channels, Inwardly Rectifying metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0027-8424
- Volume :
- 101
- Issue :
- 50
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 15583126
- Full Text :
- https://doi.org/10.1073/pnas.0404756101