Back to Search
Start Over
Involvement of eotaxin, eosinophils, and pancreatic predisposition in development of type 1 diabetes mellitus in the BioBreeding rat.
- Source :
-
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2004 Dec 01; Vol. 173 (11), pp. 6993-7002. - Publication Year :
- 2004
-
Abstract
- Allergy and autoimmunity are both examples of deregulated immunity characterized by inflammation and injury of targeted tissues that have until recently been considered disparate disease processes. However, recent findings have implicated mast cells, in coordination with granulocytes and other immune effector cells, in the pathology of these two disorders. The BioBreeding (BB) DRlyp/lyp rat develops an autoimmune insulin-dependent diabetes similar to human type 1 diabetes mellitus (T1DM), whereas the BBDR+/+ rat does not. To better understand immune processes during development of T1DM, gene expression profiling at day (d) 40 (before insulitis) and d65 (before disease onset) was conducted on pancreatic lymph nodes of DRlyp/lyp, DR+/+, and Wistar-Furth (WF) rats. The eosinophil-recruiting chemokine, eotaxin, and the high-affinity IgE receptor (FcepsilonRI) were up-regulated >5-fold in d65 DRlyp/lyp vs d65 DR+/+ pancreatic lymph nodes by microarray (p < 0.05) and quantitative RT-PCR studies (p < 0.05). DR+/+, WF, and d40 DRlyp/lyp animals possessed normal pancreatic histology; however, d65 DRlyp/lyp animals possessed eosinophilic insulitis. Therefore, immunohistochemistry for pancreatic eotaxin expression was conducted, revealing positive staining of d65 DRlyp/lyp islets. Islets of d65 DR+/+ rats also stained positively, consistent with underlying diabetic predisposition in the BB lineage, whereas WF islets did not. Other differentially expressed transcripts included those associated with eosinophils, mast cells, and lymphocytes. These data support an important role for these inflammatory mediators in BB rat T1DM and suggest that the lymphopenia due to the Ian5/(lyp) mutation may result in a deregulation of cells involved in insulitis and beta cell destruction.
- Subjects :
- Animals
Cell Movement genetics
Cell Movement immunology
Chemokine CCL11
Chemokines, CC biosynthesis
Chemokines, CC genetics
Diabetes Mellitus, Type 1 genetics
Diabetes Mellitus, Type 1 pathology
Gene Expression Profiling
Immunohistochemistry
Islets of Langerhans immunology
Islets of Langerhans pathology
Lymph Nodes chemistry
Lymph Nodes immunology
Lymph Nodes pathology
Mast Cells immunology
Mast Cells pathology
Oligonucleotide Array Sequence Analysis
Pancreas pathology
Prediabetic State genetics
Prediabetic State pathology
Protein Tyrosine Phosphatase, Non-Receptor Type 1
Protein Tyrosine Phosphatase, Non-Receptor Type 22
Protein Tyrosine Phosphatases biosynthesis
Protein Tyrosine Phosphatases genetics
Rats
Rats, Inbred WF
Receptors, IgE biosynthesis
Receptors, IgE genetics
Reverse Transcriptase Polymerase Chain Reaction
Chemokines, CC physiology
Diabetes Mellitus, Type 1 immunology
Eosinophils pathology
Genetic Predisposition to Disease
Pancreas immunology
Prediabetic State immunology
Rats, Inbred BB
Subjects
Details
- Language :
- English
- ISSN :
- 0022-1767
- Volume :
- 173
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Journal of immunology (Baltimore, Md. : 1950)
- Publication Type :
- Academic Journal
- Accession number :
- 15557196
- Full Text :
- https://doi.org/10.4049/jimmunol.173.11.6993