Back to Search Start Over

Involvement of eotaxin, eosinophils, and pancreatic predisposition in development of type 1 diabetes mellitus in the BioBreeding rat.

Authors :
Hessner MJ
Wang X
Meyer L
Geoffrey R
Jia S
Fuller J
Lernmark A
Ghosh S
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2004 Dec 01; Vol. 173 (11), pp. 6993-7002.
Publication Year :
2004

Abstract

Allergy and autoimmunity are both examples of deregulated immunity characterized by inflammation and injury of targeted tissues that have until recently been considered disparate disease processes. However, recent findings have implicated mast cells, in coordination with granulocytes and other immune effector cells, in the pathology of these two disorders. The BioBreeding (BB) DRlyp/lyp rat develops an autoimmune insulin-dependent diabetes similar to human type 1 diabetes mellitus (T1DM), whereas the BBDR+/+ rat does not. To better understand immune processes during development of T1DM, gene expression profiling at day (d) 40 (before insulitis) and d65 (before disease onset) was conducted on pancreatic lymph nodes of DRlyp/lyp, DR+/+, and Wistar-Furth (WF) rats. The eosinophil-recruiting chemokine, eotaxin, and the high-affinity IgE receptor (FcepsilonRI) were up-regulated >5-fold in d65 DRlyp/lyp vs d65 DR+/+ pancreatic lymph nodes by microarray (p < 0.05) and quantitative RT-PCR studies (p < 0.05). DR+/+, WF, and d40 DRlyp/lyp animals possessed normal pancreatic histology; however, d65 DRlyp/lyp animals possessed eosinophilic insulitis. Therefore, immunohistochemistry for pancreatic eotaxin expression was conducted, revealing positive staining of d65 DRlyp/lyp islets. Islets of d65 DR+/+ rats also stained positively, consistent with underlying diabetic predisposition in the BB lineage, whereas WF islets did not. Other differentially expressed transcripts included those associated with eosinophils, mast cells, and lymphocytes. These data support an important role for these inflammatory mediators in BB rat T1DM and suggest that the lymphopenia due to the Ian5/(lyp) mutation may result in a deregulation of cells involved in insulitis and beta cell destruction.

Details

Language :
English
ISSN :
0022-1767
Volume :
173
Issue :
11
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
15557196
Full Text :
https://doi.org/10.4049/jimmunol.173.11.6993