Back to Search
Start Over
Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel.
- Source :
-
Molecular pharmacology [Mol Pharmacol] 1992 Feb; Vol. 41 (2), pp. 322-30. - Publication Year :
- 1992
-
Abstract
- The interaction of quinidine with a cloned human cardiac potassium channel (HK2) expressed in a stable mouse L cell line was studied using the whole-cell tight-seal voltage-clamp technique. Quinidine (20 microM) did not affect the initial sigmoidal activation time course of the current. However, it reduced the peak current and induced a subsequent decline, with a time constant of 8.2 +/- 0.8 msec, to 28 +/- 6% of control (at +60 mV). The concentration dependence of HK2 block at +60 mV yielded an apparent KD of 6 microM and a Hill coefficient of 0.9. The degree of block was voltage dependent. Block increased from 0.60 +/- 0.09 at 0 mV to 0.72 +/- 0.06 at +60 mV with 20 microM quinidine and from 0.39 +/- 0.20 to 0.48 +/- 0.16 with 6 microM. Paired analysis in seven experiments with 20 microM quinidine indicated that the voltage-dependent increase in block was significant (difference, 12 +/- 4%; p less than 0.001). This voltage dependence was described by an equivalent electrical distance delta of 0.19 +/- 0.02, which suggested that at the binding site quinidine experienced 19% of the applied transmembrane electrical field, referenced to the inner surface. Quinidine reduced the tail current amplitude and slowed the time course relative to control, resulting in a "crossover" phenomenon. These data indicate that 1) the charged form of quinidine blocks the HK2 channel after it opens, 2) binding occurs within the transmembrane electrical field (probably in or near the ion permeation pathway), and 3) unbinding is required before the channel can close.
- Subjects :
- Amino Acid Sequence
Animals
Cloning, Molecular
Heart drug effects
Heart physiology
Humans
Kinetics
L Cells
Membrane Potentials drug effects
Mice
Molecular Sequence Data
Myocardium cytology
Potassium metabolism
Potassium physiology
Potassium Channels genetics
Potassium Channels physiology
Receptors, Drug drug effects
Receptors, Drug metabolism
Tetraethylammonium
Tetraethylammonium Compounds metabolism
Time Factors
Transfection
Myocardium ultrastructure
Potassium Channels drug effects
Quinidine pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0026-895X
- Volume :
- 41
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Molecular pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 1538710