Back to Search
Start Over
The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 2. Cooperative free energies of (alphaFeCObetaFe)2 and (alphaFebetaFeCO)2 T-state tetramers.
- Source :
-
Biochemistry [Biochemistry] 2004 Sep 28; Vol. 43 (38), pp. 12065-80. - Publication Year :
- 2004
-
Abstract
- Ligand photodissociation experiments are used to measure the prephotolysis equilibria between doubly liganded R and T quaternary conformers of the symmetric Fe-Co HbCO hybrids, (alpha(FeCO)beta(Co))(2) and (alpha(Co)beta(FeCO))(2). The free energies obtained from these data are used to calculate the cooperative free energies of the (alpha(FeCO)beta(Fe))(2) and (alpha(Fe)beta(FeCO))(2) intermediate CO-ligation states of normal hemoglobin in the T conformation, quantities important to the evaluation of current models of cooperativity. The symmetry rule model, incorporating sequential cooperativity of T-state ligand binding within an alphabeta dimer in addition to the traditional two-state cooperativity of the tetramer, predicts a larger free energy penalty for disturbing both dimers in a doubly liganded T tetramer than would be expected in the two-state model as currently formulated. (Cooperative energy penalties are simply proportional to the number of tetramer-bound ligands in the traditional two-state model.) The value found here for the energies of doubly liganded T microstates in which both dimers are perturbed, 7.9 +/- 0.3 kcal/mol, is consistent with the symmetry rule model but significantly higher than that expected (5-6 kcal/mol) in the two-state model of cooperativity.
Details
- Language :
- English
- ISSN :
- 0006-2960
- Volume :
- 43
- Issue :
- 38
- Database :
- MEDLINE
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 15379546
- Full Text :
- https://doi.org/10.1021/bi0493923