Back to Search Start Over

Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis.

Authors :
Chavakis T
Cines DB
Rhee JS
Liang OD
Schubert U
Hammes HP
Higazi AA
Nawroth PP
Preissner KT
Bdeir K
Source :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2004 Aug; Vol. 18 (11), pp. 1306-8. Date of Electronic Publication: 2004 Jun 18.
Publication Year :
2004

Abstract

Angiogenesis, the growth of new blood vessels, is a complex biological process that is orchestrated by several growth factors and components of the extracellular matrix, including fibronectin (FN) and its receptor the integrin alpha5beta1. Angiogenesis is a critical part of inflammation and wound repair, but the mechanism by which vascular proliferation and migration is regulated by inflammatory cells is not completely understood. We have previously shown that human neutrophil peptides (HNPs), also known as alpha-defensins, which are secreted in high concentrations when neutrophils are activated, bind specifically to FN in the extracellular matrix and inhibit plasminogen activation. Therefore, we asked whether HNPs act as a link between inflammation and angiogenesis. Alpha5beta1-mediated endothelial cell adhesion and migration to FN, both under control conditions and under stimulation by vascular endothelial growth factor (VEGF), were inhibited specifically and in a dose-dependent manner by HNPs, whereas endothelial cell adhesion and migration to other components of the extracellular matrix, such as vitronectin, collagen, or fibrinogen/fibrin were not. Consistent with this finding, HNPs bound to and promoted the binding of fibronectin to alpha5beta1 integrin in arginine-glycine-aspartic acid (RGD)-independent manner. HNPs also completely inhibited VEGF-induced proliferation and induced apoptosis of endothelial cells in a dose-dependent manner. Moreover, HNPs inhibited capillary tube formation in three-dimensional fibrin-matrices as well as neovascularization in vivo in the chicken chorioallantoic membrane assay. Taken together, these data indicate that HNPs can regulate angiogenesis by affecting endothelial cell adhesion and migration in an FN-dependent manner as well as endothelial cell proliferation. These findings provide new insight into the role of inflammatory cells in angiogenesis and might provide a platform for developing a novel class of anti-angiogenesis drugs.

Details

Language :
English
ISSN :
1530-6860
Volume :
18
Issue :
11
Database :
MEDLINE
Journal :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Publication Type :
Academic Journal
Accession number :
15208269
Full Text :
https://doi.org/10.1096/fj.03-1009fje