Back to Search
Start Over
NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius.
- Source :
-
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2004 Jun 16; Vol. 24 (24), pp. 5516-24. - Publication Year :
- 2004
-
Abstract
- Angiotensin II (AngII), acting through angiotensin type 1 (AT1) receptors, exerts powerful effects on central autonomic networks regulating cardiovascular homeostasis and fluid balance; however, the mechanisms of AngII signaling in functionally defined central autonomic neurons have not been fully elucidated. In vascular cells, reactive oxygen species (ROS) generated by the enzyme NADPH oxidase play a major role in AngII signaling. Thus, we sought to determine whether NADPH oxidase is present in central autonomic neurons and, if so, whether NADPH oxidase-derived ROS are involved in the effects of AngII on these neurons. The present studies focused on the intermediate dorsomedial nucleus of the solitary tract (dmNTS) because this region receives autonomic afferents via the vagus nerve and is an important site of AngII actions. Using double-label immunoelectron microscopy, we found that the essential NADPH oxidase subunit gp91phox is present in somatodendric and axonal profiles containing AT1 receptors. The gp91phox-labeled dendrites received inputs from large axon terminals resembling vagal afferents. In parallel experiments using patch clamp of dissociated NTS neurons anterogradely labeled via the vagus, we found that AngII potentiates the L-type Ca2+ currents, an effect mediated by AT1 receptors and abolished by the ROS scavenger Mn(III) tetrakis (4-benzoic acid) porphyrin chloride. The NADPH oxidase assembly inhibitor apocynin and the peptide inhibitor gp91phox docking sequence, but not its scrambled version, also blocked the potentiation. The results provide evidence that NADPH oxidase-derived ROS are involved in the effects of AngII on Ca2+ influx in NTS neurons receiving vagal afferents and support the notion that ROS are important signaling molecules in central autonomic networks.
- Subjects :
- Angiotensin II pharmacology
Animals
Calcium metabolism
Calcium Channels, L-Type physiology
In Vitro Techniques
Microscopy, Immunoelectron
NADPH Oxidases biosynthesis
Neurons metabolism
Patch-Clamp Techniques
Rats
Reactive Oxygen Species metabolism
Receptor, Angiotensin, Type 1 biosynthesis
Receptor, Angiotensin, Type 1 physiology
Signal Transduction
Up-Regulation
Vagus Nerve physiology
Angiotensin II physiology
NADPH Oxidases physiology
Solitary Nucleus metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1529-2401
- Volume :
- 24
- Issue :
- 24
- Database :
- MEDLINE
- Journal :
- The Journal of neuroscience : the official journal of the Society for Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 15201324
- Full Text :
- https://doi.org/10.1523/JNEUROSCI.1176-04.2004