Back to Search
Start Over
GABAA receptors mediate postnatal depression of respiratory frequency by barbiturates.
- Source :
-
Respiratory physiology & neurobiology [Respir Physiol Neurobiol] 2004 Jun 25; Vol. 140 (3), pp. 219-30. - Publication Year :
- 2004
-
Abstract
- We tested the hypothesis that barbiturates depress respiratory motor output by actions on the GABAA receptor. We examined the influence of pentobarbital sodium on nerve activity recorded from a fourth cervical (C4) ventral root (phrenic motoneuron output) in the in vitro brainstem-spinal cord preparation of neonatal rats aged 1-3 days. Bath application of pentobarbital slowed the respiratory rhythm but this effect could be reversed by drug washout or by simultaneous application of 8 microM bicuculline methiodide, a GABAA receptor antagonist. Pentobarbital up to a concentration of 80 microM (or 20 mg/l) did not change the magnitude of C4 nerve bursts. The GABAA receptor agonist muscimol evoked similar changes. The results support the hypothesis that respiratory depression by barbiturates is due to GABAA receptor-mediated inhibition, with the principal effects on rhythm generation. In the light of recent studies suggesting that GABAA receptors may be excitatory in the early neonatal period, we examined postnatal changes in the GABAergic slowing of respiratory rhythm. Stimulation of GABAA receptors slowed respiratory rhythm from the first postnatal day, with no change in efficacy over the first 3 days of life.<br /> (Copyright 2004 Elsevier B.V.)
- Subjects :
- Animals
Animals, Newborn
Drug Interactions
Female
Hypnotics and Sedatives pharmacology
In Vitro Techniques
Rats
Rats, Sprague-Dawley
Respiratory Insufficiency chemically induced
Respiratory Insufficiency physiopathology
Respiratory Mechanics drug effects
Spinal Cord drug effects
Spinal Nerve Roots drug effects
Bicuculline pharmacology
GABA Agents pharmacology
Muscimol pharmacology
Pentobarbital pharmacology
Receptors, GABA-A drug effects
Respiratory Center drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1569-9048
- Volume :
- 140
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Respiratory physiology & neurobiology
- Publication Type :
- Academic Journal
- Accession number :
- 15186784
- Full Text :
- https://doi.org/10.1016/j.resp.2004.02.004