Back to Search
Start Over
Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria/caspase pathway, associated with degradation of beta-catenin, pRb and Bcl-XL.
- Source :
-
European journal of cancer (Oxford, England : 1990) [Eur J Cancer] 2004 Jun; Vol. 40 (9), pp. 1441-52. - Publication Year :
- 2004
-
Abstract
- Butyrate can promote programmed cell death in a number of tumour cells in vitro. This paper provides evidence that butyrate induces apoptosis in human hepatoma HuH-6 and HepG2 cells but is ineffective in Chang liver cells, an immortalised non-tumour cell line. In both HuH-6 and HepG2 cells, apoptosis appeared after a lag period of approximately 16 h and increased rapidly during the second day of treatment. In particular, the effect was stronger in HuH-6 cells, which were, therefore, chosen for ascertaining the mechanism of butyrate action. In HuH-6 cells, beta-catenin seemed to exert an important protective role against apoptosis, since pretreatment with beta-catenin antisense ODN reduced the content of beta-catenin and anticipated the onset of apoptosis at 8 h of exposure to butyrate. Moreover, in HuH-6 cells, butyrate induced loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, activation of caspase 9 and caspase 3, and degradation of poly(ADP-ribose) polymerase. In addition, during the second day of treatment, beta-catenin, pRb, and cyclins D and E were diminished and the phosphorylated form of pRb disappeared. Also, the content of the anti-apoptotic factor Bcl-XL fell markedly during this period, while that of the pro-apoptotic factor Bcl-Xs increased. These effects were accompanied by an increase in both Bcl-XL and Bcl-Xs mRNA transcripts, as ascertained by reverse transcriptase-polymerase chain reaction. Our results suggest that caspases have a crucial role in butyrate-induced apoptosis. This conclusion is supported by the observation that the inhibitors of caspases, benzyloxy carbonyl-Val-Ala-Asp-fluoromethylketone and benzyloxy carbonyl-Asp-Glu-Val-Asp-fluoromethylketone, prevented apoptosis and the decrease in Bcl-XL, pRb, cyclins and beta-catenin. These effects were most probably responsible for the increased sensitivity of the cells to butyrate-induced apoptosis, which was observed on the second day of treatment.
- Subjects :
- Blotting, Western methods
Caspases metabolism
Cell Line drug effects
Cyclin D
Cyclin E metabolism
Cyclins metabolism
Cytoskeletal Proteins metabolism
Humans
Membrane Potentials drug effects
Poly(ADP-ribose) Polymerases metabolism
Proto-Oncogene Proteins c-bcl-2 genetics
Reverse Transcriptase Polymerase Chain Reaction
Trans-Activators metabolism
bcl-X Protein
beta Catenin
Apoptosis drug effects
Butyrates pharmacology
Carcinoma, Hepatocellular pathology
Liver Neoplasms pathology
Subjects
Details
- Language :
- English
- ISSN :
- 0959-8049
- Volume :
- 40
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- European journal of cancer (Oxford, England : 1990)
- Publication Type :
- Academic Journal
- Accession number :
- 15177505
- Full Text :
- https://doi.org/10.1016/j.ejca.2004.01.039