Back to Search
Start Over
Tumor necrosis factor alpha stimulates MUC1 synthesis and ectodomain release in a human uterine epithelial cell line.
- Source :
-
Endocrinology [Endocrinology] 2004 Sep; Vol. 145 (9), pp. 4192-203. Date of Electronic Publication: 2004 May 13. - Publication Year :
- 2004
-
Abstract
- Regulation of MUC1 expression and removal is a salient feature of embryo implantation, bacterial clearance, and tumor progression. In some species, embryo implantation is accompanied by a transcriptional decline in uterine epithelial expression of MUC1. In other species, MUC1 is locally removed at blastocyst attachment sites, suggesting a proteolytic activity. Previously, we demonstrated that MUC1 is proteolytically released from the surface of a human uterine epithelial cell line, HES, and identified TNFalpha converting enzyme/a disintegrin and metalloprotease 17 as a constitutive and phorbol ester-stimulated MUC1 sheddase. The aims of the current study were to test the ability of soluble factors elevated during the periimplantation interval in vivo to stimulate ectodomain shedding of MUC1 from HES uterine epithelial cells and to characterize the nature of this proteolytic activity(ies). We identified TNFalpha as a prospective endogenous stimulus of MUC1 ectodomain release and of MUC1 and TNFalpha converting enzyme/a disintegrin and metalloprotease 17 expression. Moreover, we established that TNFalpha-stimulated MUC1 shedding occurs independently of increased de novo protein synthesis and demonstrated that the TNFalpha-induced increase in MUC1 gene expression is mediated through the kappaB site in the MUC1 promoter. Finally, we determined that the TNFalpha-sensitive MUC1 sheddase is inhibited by the metalloprotease inhibitor, TNFalpha protease inhibitor (TAPI), and the endogenous tissue inhibitor of metalloprotease-3. Collectively, these studies provide the initial in vitro characterization of a putative physiological stimulus of MUC1 ectodomain release and establish the nature of the metalloproteolytic activity(ies) involved.
- Subjects :
- Antigens, Surface metabolism
Cell Line
Cytoplasm metabolism
Dipeptides pharmacology
Epithelial Cells cytology
Epithelial Cells drug effects
Female
Gene Expression drug effects
Humans
Hydroxamic Acids pharmacology
Mucin-1 chemistry
Mucin-1 metabolism
NF-kappa B metabolism
Promoter Regions, Genetic physiology
Protein Kinase C metabolism
Protein Structure, Tertiary
Tissue Inhibitor of Metalloproteinase-1 pharmacology
Tissue Inhibitor of Metalloproteinase-3 pharmacology
Transcription Factor RelA
Antineoplastic Agents pharmacology
Epithelial Cells physiology
Mucin-1 genetics
Tumor Necrosis Factor-alpha pharmacology
Uterus cytology
Subjects
Details
- Language :
- English
- ISSN :
- 0013-7227
- Volume :
- 145
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 15142990
- Full Text :
- https://doi.org/10.1210/en.2004-0399