Back to Search
Start Over
Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae.
- Source :
-
RNA (New York, N.Y.) [RNA] 2004 Apr; Vol. 10 (4), pp. 691-703. - Publication Year :
- 2004
-
Abstract
- The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was </=0.5%. This low threshold for the onset of the major component of NMD indicates that mRNA surveillance is an ongoing process that occurs throughout the lifetime of an mRNA.
- Subjects :
- Genes, Reporter
Mutation
Peptide Termination Factors
Prions metabolism
RNA Helicases genetics
RNA Helicases metabolism
Saccharomyces cerevisiae Proteins metabolism
Trans-Activators metabolism
Codon, Nonsense metabolism
Peptide Chain Termination, Translational physiology
RNA, Messenger metabolism
Saccharomyces cerevisiae genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1355-8382
- Volume :
- 10
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- RNA (New York, N.Y.)
- Publication Type :
- Academic Journal
- Accession number :
- 15037778
- Full Text :
- https://doi.org/10.1261/rna.5147804