Back to Search
Start Over
The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor alpha in MCF7 breast cancer cells.
- Source :
-
Endocrine [Endocrine] 2003 Dec; Vol. 22 (3), pp. 275-84. - Publication Year :
- 2003
-
Abstract
- Xenoestrogens are chemically distinct industrial products potentially able to disrupt the endocrine system by mimicking the action of endogenous steroid hormones. Among such compounds, the ubiquitous environmental contaminants bisphenol A (BPA) and 4-nonylphenol (NPH) may promote adverse effects in humans triggering estrogenic signals in target tissues. Following a research program on human exposure to endocrine disruptors, we found contamination of fresh food by BPA and NPH. More important, these contaminants were found to display estrogen-like activity using as a model system the estrogen-dependent MCF7 breast cancer cells (MCF7wt); its variant named MCF7SH, which is hormone-independent but still ERalpha-positive, and the steroid receptor-negative human cervical carcinoma HeLa cells. In transfection experiments BPA and NPH activated in a direct manner the endogenous ERalpha in MCF7wt and MCF7SH cells, as the antiestrogen hydroxytamoxifen was able to reverse both responses. Moreover, only the hormone-binding domains of ERalpha and ERbeta expressed by chimeric proteins in HeLa cells were sufficient to elicit the transcriptional activity upon BPA and NPH treatments. Transfecting the same cell line with ERalpha mutants, both contaminants triggered an estrogen-like response. These transactivation properties were interestingly supported in MCF7wt cells by the autoregulation of ERalpha which was assessed by RT-PCR for the mRNA evaluation and by immunoblotting and immunocytochemistry for the determination of protein levels. The ability of BPA and NPH to modulate gene expression was further confirmed by the upregulation of an estrogen target gene like pS2. As a biological counterpart, concentrations of xenoestrogens eliciting transcriptional activity were able to stimulate the proliferation of MCF7wt and MCFSH cells. Only NPH at a dose likely too high to be of any physiological relevance induced a severe cytotoxicity in an ERalpha-independent manner as ascertained in HeLa cells. The estrogenic effects of such industrial agents together with an increasing widespread human exposure should be taken into account for the potential influence also on hormone-dependent breast cancer disease.
- Subjects :
- Benzhydryl Compounds
Blotting, Western
Breast Neoplasms genetics
Cell Division drug effects
Cell Line, Tumor
Estrogen Receptor alpha
Estrogens, Non-Steroidal pharmacology
Female
Food Contamination
Gene Expression Regulation, Neoplastic drug effects
Humans
Immunohistochemistry
Neoplasms, Hormone-Dependent genetics
Neoplasms, Hormone-Dependent metabolism
RNA, Messenger biosynthesis
RNA, Messenger genetics
Receptors, Estrogen biosynthesis
Receptors, Estrogen genetics
Reverse Transcriptase Polymerase Chain Reaction
Transcriptional Activation drug effects
Transfection
Breast Neoplasms metabolism
Environmental Pollutants pharmacology
Phenols pharmacology
Receptors, Estrogen agonists
Subjects
Details
- Language :
- English
- ISSN :
- 1355-008X
- Volume :
- 22
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Endocrine
- Publication Type :
- Academic Journal
- Accession number :
- 14709801
- Full Text :
- https://doi.org/10.1385/ENDO:22:3:275