Back to Search Start Over

Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens.

Authors :
Liu CN
Li XQ
Gelvin SB
Source :
Plant molecular biology [Plant Mol Biol] 1992 Dec; Vol. 20 (6), pp. 1071-87.
Publication Year :
1992

Abstract

In an effort to improve the T-DNA-mediated transformation frequency of economically important crops, we investigated the possible enhancement effect of multiple copies of virG genes contained in Agrobacterium tumefaciens strains upon the transient transformation of celery, carrot and rice tissues. Four days after A. tumefaciens infection, we performed histochemical beta-glucuronidase (GUS) assays to determine the frequency of transient transformation of calli from celery and carrot, and explants from rice and celery. Additional copies of octopine- and agropine-type virG genes in A. tumefaciens strains containing an agropine-type Ti-plasmid enhanced the frequency of transient transformation of celery and rice. This enhancement ranged from 25% to five-fold, depending upon the source of the virG gene and the plant tissues inoculated. For both rice and celery, we observed a greater enhancement of transformation using A. tumefaciens strains containing additional copies of an octopine-type virG gene than with strains harboring additional copies of an agropine-type virG gene. Multiple copies of virG genes contained in A. tumefaciens strains harboring a nopaline-type Ti-plasmid had a smaller enhancing effect upon the transformation of celery tissues, and no enhancing effect upon the transformation of rice. In contrast, we obtained a three-fold increase in the transient transformation frequency of carrot calli using an A. tumefaciens strain harboring a nopaline-type Ti-plasmid and additional copies of an octopine-type virG gene. Our results show that multiple copies of virG in A. tumefaciens can greatly enhance the transient transformation frequency of celery, carrot and rice tissues, and that this enhancement is influenced by both the type of Ti-plasmid harbored by A. tumefaciens and by the infected plant species.

Details

Language :
English
ISSN :
0167-4412
Volume :
20
Issue :
6
Database :
MEDLINE
Journal :
Plant molecular biology
Publication Type :
Academic Journal
Accession number :
1463842
Full Text :
https://doi.org/10.1007/BF00028894