Back to Search
Start Over
Independent component analysis for automated decomposition of in vivo magnetic resonance spectra.
- Source :
-
Magnetic resonance in medicine [Magn Reson Med] 2003 Oct; Vol. 50 (4), pp. 697-703. - Publication Year :
- 2003
-
Abstract
- Fully automated methods for analyzing MR spectra would be of great benefit for clinical diagnosis, in particular for the extraction of relevant information from large databases for subsequent pattern recognition analysis. Independent component analysis (ICA) provides a means of decomposing signals into their constituent components. This work investigates the use of ICA for automatically extracting features from in vivo MR spectra. After its limits are assessed on artificial data, the method is applied to a set of brain tumor spectra. ICA automatically, and in an unsupervised fashion, decomposes the signals into interpretable components. Moreover, the spectral decomposition achieved by the ICA leads to the separation of some tissue types, which confirms the biochemical relevance of the components.<br /> (Copyright 2003 Wiley-Liss, Inc.)
Details
- Language :
- English
- ISSN :
- 0740-3194
- Volume :
- 50
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Magnetic resonance in medicine
- Publication Type :
- Academic Journal
- Accession number :
- 14523954
- Full Text :
- https://doi.org/10.1002/mrm.10595