Back to Search
Start Over
GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus.
- Source :
-
Epilepsy research. Supplement [Epilepsy Res Suppl] 1992; Vol. 7, pp. 79-91. - Publication Year :
- 1992
-
Abstract
- Postsynaptic targets of the GABAergic septohippocampal and the serotonergic raphe-hippocampal pathways were studied using anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with pre- and postembedding immunocytochemistry in the rat. Two types of afferents were labeled in the hippocampus and dentate gyrus from the medial septum-diagonal band of Broca complex, one with large diameter varicosities and another with smaller terminals. The former type was shown to be immunoreactive for gamma-aminobutyric acid (GABA), and to innervate predominantly GABA-immunoreactive interneurons. Subsequently, these target interneurons were demonstrated to include all subpopulations of GABAergic cells which could be visualized by antisera against parvalbumin, calbindin D28k, calretinin, cholecystokinin, somatostatin, neuropeptide Y and vasoactive intestinal polypeptide. These types of interneurons have different afferent and efferent connections, and thus participate in different inhibitory processes in the hippocampal formation. The other subcortical pathway, the serotonergic projection from the median raphe nucleus, was also shown to establish synapses predominantly with GABAergic interneurons both in the hippocampus and in the dentate gyrus. In contrast to the septohippocampal projection, this pathway did not innervate all types of GABAergic neurons. They selected a particular subpopulation, i.e. those which contain calbindin D28k, and ignored those which contained parvalbumin or the other neurochemical markers. This suggests a strong functional specialization among local inhibitory circuits, as well as among the subcortical afferents originating in the septum and raphe. These findings suggest that a mechanism by which numerically small afferent pathways may have a profound global effect on the electrical activity of the hippocampal formation is the selective innervation of local interneurons. These GABAergic inhibitory cells, in turn, control the activity of large populations of principal cells. The level of GABAergic inhibition determines the degree of population synchrony and influences N-methyl-D-aspartate receptor-mediated epileptiform burst-firing. Thus, the specific subcortical modulation of hippocampal inhibitory circuits may also have fundamental implications for epileptogenesis.
- Subjects :
- Afferent Pathways anatomy & histology
Animals
Brain Mapping
Calbindin 1
Calbindins
Cholecystokinin physiology
Dendrites ultrastructure
Female
Immunohistochemistry
Male
Microscopy, Electron
Neuropeptide Y physiology
Parvalbumins physiology
Rats
Receptors, GABA-A physiology
S100 Calcium Binding Protein G physiology
Somatostatin physiology
Synapses ultrastructure
Vasoactive Intestinal Peptide physiology
Hippocampus anatomy & histology
Interneurons ultrastructure
Neural Inhibition physiology
Raphe Nuclei anatomy & histology
Septum Pellucidum anatomy & histology
Serotonin physiology
gamma-Aminobutyric Acid physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0922-9833
- Volume :
- 7
- Database :
- MEDLINE
- Journal :
- Epilepsy research. Supplement
- Publication Type :
- Academic Journal
- Accession number :
- 1361333