Back to Search Start Over

Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection.

Authors :
Weinberger LS
Schaffer DV
Arkin AP
Source :
Journal of virology [J Virol] 2003 Sep; Vol. 77 (18), pp. 10028-36.
Publication Year :
2003

Abstract

Recent reports confirm that, due to the presence of long-lived, latently infected cell populations, eradication of human immunodeficiency virus type 1 (HIV-1) from infected patients by using antiretroviral drugs will be exceedingly difficult. An alternative to virus eradication may be to use gene therapy to induce a pseudo-latent state in virus-producing cells, thus transforming HIV-1 into a lifelong, but manageable, virus. Conditionally replicating HIV-1 (crHIV-1) gene therapy vectors provide an avenue for subduing HIV-1 expression in infected cells (by creating a parasite, crHIV-1, of the parasite HIV-1), potentially reducing the HIV-1 set point and delaying AIDS onset. Development of crHIV-1 vectors has proceeded in vitro, but the requirements for a crHIV-1 vector to proliferate and persist in vivo have not been explored. We expand a widely accepted mathematical model of HIV-1 in vivo dynamics to include a crHIV-1 gene therapy virus and derive a simple criterion for designing crHIV-1 viruses that will persist in vivo. The model introduces only two new parameters-HIV-1 inhibition and crHIV-1 production-and both can be experimentally engineered and controlled. Analysis demonstrates that crHIV-1 gene therapy can indefinitely reduce HIV-1 set point to levels comparable to those achieved with highly active antiretroviral therapy, provided crHIV-1 production is more efficient than HIV-1. Paradoxically, highly efficient therapeutic inhibition of HIV-1 was found to be disadvantageous. Thus, the field may benefit by shifting the search for more potent antiviral genes toward engineering optimized therapy viruses that package ultra-efficiently while downregulating viral production moderately.

Details

Language :
English
ISSN :
0022-538X
Volume :
77
Issue :
18
Database :
MEDLINE
Journal :
Journal of virology
Publication Type :
Academic Journal
Accession number :
12941913
Full Text :
https://doi.org/10.1128/jvi.77.18.10028-10036.2003