Back to Search
Start Over
High-throughput screening for the identification of small-molecule inhibitors of retinoblastoma protein phosphorylation in cells.
- Source :
-
Analytical biochemistry [Anal Biochem] 2003 Sep 01; Vol. 320 (1), pp. 66-74. - Publication Year :
- 2003
-
Abstract
- The tumor suppressor protein, pRb, regulates progression through the G1 phase of the cell cycle by its ability to bind to and regulate the activity of a variety of transcription factors. This function of pRb is disabled through its phosphorylation by the cyclin-dependent kinase (CDK) family of serine/threonine kinases. In many human cancers, genetic alteration such as loss of CDK inhibitor function and deregulated G1 cyclin expression leads to inappropriate phosphorylation and hence inactivation of this tumor suppressor. Identification of cell-permeable small molecules that block pRb phosphorylation in these tumors could therefore lead to development of an effective anticancer treatment. As a result, we have developed a high-throughput assay to detect changes in the level of pRb phosphorylation in cells. Signal detection is by a time-resolved fluorescence-based cellular immunosorbant assay on a fixed monolayer of cells. This comprises a mouse monoclonal antibody that recognizes the phosphorylated form of serine 608 on pRb, a known site of CDK phosphorylation, and a Europium-labeled secondary antibody for signal detection. The assay is reproducible and amenable to automation and has been used to screen 2000 compounds in a search for cell-permeable small molecules that will block pRb phosphorylation.
- Subjects :
- Animals
Antibodies, Monoclonal metabolism
Cell Line, Tumor
Cell Membrane chemistry
Drug Evaluation, Preclinical methods
Female
Humans
Mice
Phosphorylation
Purines pharmacology
Retinoblastoma Protein antagonists & inhibitors
Roscovitine
Fluoroimmunoassay methods
Retinoblastoma Protein metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0003-2697
- Volume :
- 320
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Analytical biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 12895470
- Full Text :
- https://doi.org/10.1016/s0003-2697(03)00349-x